Annual Report of
ADVENTURE Project
ADV-99-1 (1999)

PARALLEL VISUALIZATION OF FINITE ELEMENT SOLUTIONS
WITH TEN MILLION DOFS USING PC CLUSTER IN A WINDOWS
ENVIRONMENT

*Shinobu YOSHIMURA ,**Shinich SHOUI, and **Hiroshi AKIBA

*School of Engineering, University of Tokyo
e-mail: yoshi@q.t.u-tokyo.ac.jp

**Allied Engineering Corporation
e-mail: shoui@alde.co.jp, akiba@alde.co.jp

1 INTRODUCTION

When visualization is processed in engineering design, physical phenomena are usually globally
understood at first, and then the detailed behaviors are analyzed. In order to understand physical
phenomena, the visualized image must be freely and interactively displayed from any perspective,
even if the image is not precise. On the other hand, the details must be displayed and freely-
searching functions are also required.

Another approach is to only visualize the important information which is extracted from the results
of the analysis in advance. However, it is not easy to determine parameters to extract the information
from large and complicated data. Also, data extraction makes a detailed search impossible. Therefore,
if the significant factor in a large scale analysis is retaining realism, all the results obtained on the
analysis must be preserved and a user can smoothly switch the visualization functions at any time.

This kind of visualization has been mainly performed by the cooperative use of supercomputers and
workstations with specially equipped hardware for graphics. Within this frame, various kinds of
architectures have been developed according to how much processing is performed on a
supercomputer.

Recently, significant three-dimensional-graphics environments have been developed, and it is
becoming possible to construct a system which offers real-time visual images with interactive
operations. Even on personal computers, visualization processing is becoming widely available due to
the improvement of its basic ability and the high cost-performance. However, present PCs are not
powerful enough to visualize images in large scale analyses.

In order to achieve real-time display with interactiveness, the drawing rate should be kept at around
10Hz. This is the bottleneck in the visualization of large scale analyses on a PC. At this point, PCs
can not oppose workstations with special graphics equipment that is processing 3D images. Recently,
however, PC-class machines are available, and distributed-processing environment, which is made up
with several kinds of computers connected by LAN, is becoming popular. Therfore, technology which
uses these computer resources effectively is needed.

This study describes a system which can visualize results of three-dimensional-finite-element
analyses with ten-million-scale degrees of freedom. It generates visualization information on a PC
cluster working in parallel to display the results on a PC with Windows NT.

PARALLEL VISUALIZATION OF FINITE ELEMENT SOLUTIONS WITH TEN MILLION DOFS USING PC CLUSTER
IN A WINDOWS ENVIRONMENT

2 VISUALIZATION PROCESSES

In parallel visualization processing, the first issue is to decide which processes should be performed
in parallel. In addition, the amount of the calculations and communication must be balanced carefully.
Also, seveal parallel processing procedures must be implemented according to each visualization
method.

Scientific visualization can be classified into two types: surface and volume visualization. In the
former the surfaces of the objects or physical quantities on any cross section are visualized, in the
latter, the direct volume rendering or the physical quantities inside an object, are visualized. The data
format can be defined by regarding the visualization process as the data-conversion process abstractly.
Figure 1 shows a flow of this abstraction. The visualization process is generally composed of two
steps, mapping and rendering. The details of each process are described later.

Results and Mesh geometry

Mapping

Graphics Primitives

Rendering

Raster Image Data

Video Circuit

Display

Figure 1 Data-conversion process in Visualization

An analysis calculation first creates the distribution of certain physical quantities which are
requested to be visualized. The results of finite-element analysis are expressed as scalars, vectors or
tensors on each element or node of the meshes. For example, in an elastostatic stress analysis, the
strain and stress tensors are produced from the displacement vectors, and scalar fields like the
equivalent stress are also obtained. The meshes consist of geometric elements like tetrahedrons or
hexahedrons, and the integral points in each element possess the physical quantities obtained via the
analysis. Since the visualization information is presented on the geometric elements such as points,
lines and faces, an interpolation is necessary.

Usually, the physical quantities on the nodes are calculated by averaging the values on the elements
which have been previously obtained from the values on the integral points. In order to make the
images easy to understand, some kinds of geometric information must be taken into account, so as to
make the physical quantities correspond to the visualization information. This procedure is called

PARALLEL VISUALIZATION OF FINITE ELEMENT SOLUTIONS WITH TEN MILLION DOFS USING PC CLUSTER
IN A WINDOWS ENVIRONMENT

"mapping".
There are two visualization methods in finite element analysis, i.e. data sampling and conversion to
graphics primitives. These techniques are described as follows.

(1) Transformation to graphics primitives

In elastostatic stress analyses, scalar fields are displayed on the surfaces of the objects. By using the
connectivity information of the meshes, the planner patch elements are extracted to represent the
surface shapes of the analysis model, and the visualization information is displayed on them. A color
map is determined that corresponds to the regularized physical quantities on the sets of the vertices. In
other methods, free-form surfaces or patches generated on a pre-processor are sometimes used.

The physical quantities inside the objects are visualized by isosurfaces or cross sections for the
scalar data. In order to display the cross section, the faces are extracted, where the cross section
crosses each finite element. At the same time, the physical quantities are linearly interpolated to them.
A surface within the same level is extracted by scanning the physical quantities on the nodes of each
finite element so as to display the isosurfaces.

(2) Data sampling

In data sampling, the physical quantities on structured grids, which are obtained by the interpolation
from the results of the analysis are sampled. This procedure is used in volume rendering and also is
applicable to generating cross sections or isosurfaces. Displaying isosurfaces is generally achieved by
the Marching Cube method with the grids for the sampling. In the finite element method, unstructured
grids can decrease the number of the calculations even on complicated processing, as compared to
structured grids. They are considered to be especially effective for high spatial resolutions.

(3) Rendering

In surface visualization, the physical quantities are made to correspond to the graphics primitives.
They must be converted to a raster data to be displayed on the screen. The Z-buffer method is often
used, in which graphics primitives are scanned with taking the front-and-back relationship from this
viewpoint into account, and they are projected onto a plane to make a two-dimensional image. The
ability of the interactive three-dimensional graphics is core primary to the Z-buffer method.
Furthermore, optical effects are also added to the rendering procedure to make the object realistic.
Flat or smooth shading are the typical methods used to produce optical effects.

3 PARALLEL VISUALIZATION SYSTEM

A basic approach to system architecture and an algorithm for an interactive parallel visualization
system are described here. The meaning of being interactive is that an image can be smoothly
updated in every operation by users, such as zooming, rotationing the displayed objects, or shifting in
the viewspace.

3.1 Approach to parallel processing

Visualization for large scale analyses requires an excessive number of calculations and memory to
be performed on a single processor system. For example, a problem with a-million-scale degrees of

PARALLEL VISUALIZATION OF FINITE ELEMENT SOLUTIONS WITH TEN MILLION DOFS USING PC CLUSTER
IN A WINDOWS ENVIRONMENT

freedom roughly needs 300 MB of memory. A single processor system therefore fails to deal with
larger scale solutions, and parallel processing must be required. One of the problems in parallel
visualization is that the data conversion process requires a large number of calculations and memory.
Therefore one of the problems is how to distribute these processes effectively. This will be examined
in the following section.

First, the way we will discuss how to access the data is considered. The data is distributed in each
parallel PE; this may reach several tens or hundred of mega-bytes in a large scale analysis. Since
limited hardware can keep all data in the same place, the data must be preserved on the network in a
distributed manner. This may lead to a client-server system for visualization processing [Pei-Wen Liu
et al.,, 1996], where a large number of analysis results are managed on the parallel processing
environment and load distribution is achieved during the processes between inputting the data and
generating the visual images. In this project, the pre-processing system automatically generates the
meshes to be decomposed based on the topology between the elements. The main solver uses these
decomposed domains in its parallel calculations. This visualization system, therefore, can also use this
decomposed data by distributing them on the cluster.

Next, we will describe how to generate visual images in parallel. There may be two methods used,
depending on how many processes are performed in parallel: one generates only graphics primitives
in parallel, and the other performs all procedures up to the rendering in parallel. For volume rendering,
the volume data is directly rendered without extracting graphics primitives; a parallel algorithm for
MPP has been developed along this way [Jaswinder Pal Singh et al., 1994].

Here, parallel surface visualization is examined. In a parallel rendering process on a PC cluster, a
raster image, (i.e. the result of the rendering), needs to be transferred to the display PC. The load
should be distributed every time drawing on the display. The efficiency in parallel processing must be
sufficient, even taking the data-transferring cost into account, However, software-only rendering
generally doesn't have any advantages, since processing by software is much slower than that by
hardware and it is costly to transfer the raster images obtained by the rendering. From these reasons,
this system uses the following approach: the procedures between the calculation of the physical
quantities and the extraction of the graphics primitives are performed in parallel, and the data of the
graphics primitives is transferred to the display PC, and the rendering is made on the single processor.
Another problem for the visualization of large scale analyses is the trade-off between the number of
the calculations and the resolution of the obtained image, i.e. the spatial resolution of the analysis can
exceed that of the visual image. In other words, the refinement of the finite elements exceeds the
resolution which can contain the smoothness of the displayed image, and the number of the graphics
primitives corresponding to the pixels on the display are lager than that. When the wire-frames of the
meshes are displayed, the elements are too small to be seen. The same problem also appears when
displaying the cross sections or isosurfaces.

Furthermore, even if the graphics primitives can be extracted quickly enough in parallel processing,
the amount of information must be saturated on the rendering process. For these reasons, the
visualization should be achieved by a procedure based on the display resolution. This technique can
retain the system's performance and avoid increasing the load in the rendering process by adjusting or
keeping the number of the graphics primitives approximately constant. Therefore, an efficient
algorithm and a practical system architecture is needed.

This technique also has the following advantages. Since the ability to display graphics is totally
dependent on the hardware, one of the requirements can be achieved by making the software that can
work on various kinds of machines with different graphics ability. This is not to prevent the use of

PARALLEL VISUALIZATION OF FINITE ELEMENT SOLUTIONS WITH TEN MILLION DOFS USING PC CLUSTER
IN A WINDOWS ENVIRONMENT

high-resolution visual images but to offer choices to users.

This technique is equivalent to developing an effective algorithm for a system with interactive
operating functions at a practical level even on a large scale analysis, because the spatial resolution of
the analysis model will exceed that of the visual image. The trade-off problem between the accuracy
of the visualization images and the number of the calculations instantly leads to a procedure based on
the resolution of the visualization image.

3.2 Architecture of the parallel visualization system

The parallel processing in this system is performed in perfect parallelism [Cherri M. Pancake, 1996].
This means that the problem is decomposed into independent domains which enable local processing.
Since the data in this system is already decomposed as described above, this method and the
successive processing algorithm are applicable to all surface-rendering processes.

The local disks on each PE have the data of decomposed finite element meshes and the results of
the analysis. A slave, i.e. each PE, can only access the data and extracts the graphics primitives
independently. Each process communicates by message passing. In volume rendering, the data access
to a large shared space is abstracted via the message passing [Jaswinder Pal Singh et al., 1994].

This system is composed of a PC cluster which consists of several servers and a client, as shown in
Fig. 2.

PC Cluster

Client Ethernet

Figure 2 Client-Server System

Parallel processing is performed via the domain decomposition method [G. Yagawa et al., 1993] in
this client-server system. It works with several slave processes and a master process which
corresponds to each PE. A message passing model usually does not dynamically create a process. In
addition, two programming models are known: in one model a multiplexed task is performed in each

PARALLEL VISUALIZATION OF FINITE ELEMENT SOLUTIONS WITH TEN MILLION DOFS USING PC CLUSTER
IN A WINDOWS ENVIRONMENT

single processor, and in the other different programs are performed as different tasks. Here, the latter
one (i.e. SPMD) is used.

The following describes the details of the system's components, i.e. processes of the client, master
and slaves. The relationship is shown in Fig. 3.

Requests Sub Tasks
Client . Master . Slaves
<— <—
Results Results

Figure 3 Master-Slave for Parallel Processing

The client displays the visualization information through the interactive operation on a GUI. Events
happen via users like menu selection or button clicking on the window, and the request commands for
the required processes are sent to the master. The client only receives the results from the master; this
data is the extracted graphics primitives. Three dimensional graphics are displayed on the client and
the user operates the displayed objects by zooming, rotating, or shifting in view space, etc.

The master receives the operation-request messages from the client and sends the request messages
of decomposed task to the slaves. The master merges the processed results on the slaves in parallel
and sends them to the client.

3.3 Visualization algorithms for large scale analyses

Some algorithms for visualization processing in large scale elastic stress analyses are described
below.

(1) Displaying surface contours

Scalar fields are visualized in elastic stress analysis using geometric primitives of the analysis
model. Here, the problem is the data format to display surface geometry. By using free-form surfaces
which are used in the pre-system to represent surface geometry, the surfaces can be split into parts by
any number. Then, it becomes relatively simple to make the patches by quadtrees for levels of detail.
Since the physical quantities are specified on the nodes of the meshes, they must be projected onto the
patches. Also, if the patches are not fine enough, quantities like the stress concentration cannot be
accurately obtained because the density of the patches does not correspond to the surface used in the
analysis calculation. The same problem arises also for patches used in automatic element generation.
Therefore, in this system, the surface patches are extracted from the connectivity information between
the mesh elements.

When displaying surface contours of the objects, the surface patches are extracted on each slave in
parallel and the physical quantities are mapped onto them. They are merged by the master and sent to
the client.

For an analysis with several hundred thousands of surface patches, it becomes difficult to display

PARALLEL VISUALIZATION OF FINITE ELEMENT SOLUTIONS WITH TEN MILLION DOFS USING PC CLUSTER
IN A WINDOWS ENVIRONMENT

the image smoothly. In order to resolve this problem, the surface patches should be simplified. The
method is described later.
(2) Displaying cross section

When generating a cross section, the client sends the information to the master to preserve it. The
master sends it to all the slaves and waits for orders. For each grid point found on the cross section,
the slaves search the elements, which include the grid points. As shown in Fig. 4, the slaves keep
singly linked list in the voxels, which is divided into three dimensional orthogonal lattice. These
voxels are made by decomposing the box coordinates which include the meshes owned by the slave.
The linked list holds the index of the elements inside the domain.

The slaves can quickly find the element, (including the grid point on the cross section) by
calculating the coordinates from the element index kept in the voxel space. The physical quantities are
obtained in this manner. Then, the slaves send them to the master. This is illustrated in Fig. 5.

After all the processes on the slaves are finished, the master sends them to the client for the display.

In this method, the precision of the visualized images depends on the grid number of the
crosssection. Also, the number of the calculation depends on both the grid number and the time
needed to search the elements. The processing time can be reduced by adjusting the number of the
voxels according to the spatial mesh resolution used in the analysis.

(3) Displaying isosurfaces

The isosurfaces are generated by the data-sampling method. Triangular patches are made by
Marching Cube method, as similarly to the cross-section generation, after the physical quantities are
sampled with each orthogonal-grid point on the slaves. The master merges the patches extracted by
the slaves, and send them to the client for display. Here, both the number of the calculation and the
precision of the visualized images depend on the grid size in each slave, and not on the analysis scale.

Cross Section Voxel Space

Linked List

Search Elements ID

Figure 4 Data Sampling to a Cross Section

PARALLEL VISUALIZATION OF FINITE ELEMENT SOLUTIONS WITH TEN MILLION DOFS USING PC CLUSTER
IN A WINDOWS ENVIRONMENT

Master Slaves

Cross Section Sub Cross Section Voxel

Figure 5 Cross Section Generation in Parallel

(4) Simplification of surface patches

There are several methods that can simplify the surface patches. In this study, triangulars are
introduced as the surface patches which are extracted from the meshes, and the vertex pairs of each
triangular are contracted to one side [Michel Garland and Paul Heckbert, 1997]. A parameter which is
determined by the length of the edge decides which pair should be contracted, i.e. the length of the
edge on every extracted elements are calculated first.

Next, an adequate length is chosen from their distribution. If an edge is shorter than this length, the
edge is contacted to the other vertex and this procedure is recursively performed. The advantage of
this procedure is that the coordinates of the triangular vertices after the simplification are the same as
the nodes in the original analysis. This method is efficient. Each slave can perform this step in parallel,
since there is no need to calculate physical quantities again using interpolation. The problem here is
that the simplification is done only on short edges or dense parts of the elements. Therefore, the
obtained stress concentration could not be accurate enough, because fine meshes are made around the
region which may cause the stress concentration.

So, the vertex clustering should be done to reduce this effect. At first, the triangular vertices are
stored in octtrees, as shown in Fig. 6. The domains are recursively divided by the number of the
vertices included in each domain, and a contraction, (described above for vertex pairs of the edge), is
performed for the sets of the vertices in each divided domain.

Furthermore, the parameter for the contraction is not only the length of edge, but the gradient of the
physical quantities is also considerd here. It is possible to simplify the patches and also to contain the
visualization information in parts with a rapid gradient of the scalar field by regularizing the scalar

PARALLEL VISUALIZATION OF FINITE ELEMENT SOLUTIONS WITH TEN MILLION DOFS USING PC CLUSTER
IN A WINDOWS ENVIRONMENT

quantities at each vertex and adding the difference as the parameters. For the isosurfaces, the
contraction for the vertex pairs is accurate for the simplification.

(5) Levels of detail

By using the above-described simplification method for surface patches, it is possible to set levels
of simplification and to generate several patches with different fineness. They can be easily obtained
by recording the history of the contraction on each vertex. As shown in Fig. 7, the history is composed
of the index of the vertices, which is made by the contraction of the surface patches on each level of
the simplification. This is performed in parallel in a manner similar to the simplification; each slave
independently creates a history and sends it to the master. In elastostatic stress analyses, sending it
from the master to the client once, is adequate. On the other hand, it should be sent to each step in an
unsteady analysis.

Octree
Subdomain Patch Simplified Patch

Vertex Levels of Detail
0 —> 0] O
1 —> 1] 1
2 > 2|1
3 —> 3| 3
4 —> 4 | 4
5 —> 5| 5
6 > 2 1
7 > 7 7
8 —> 8 | 8

Figure 7 Leveles of Detail

PARALLEL VISUALIZATION OF FINITE ELEMENT SOLUTIONS WITH TEN MILLION DOFS USING PC CLUSTER
IN A WINDOWS ENVIRONMENT

4 IMPLEMENTAION

Object oriented design and implementation are employed in this development. Here, the
programming language is C++. MFC (Microsoft Foundation Class Library) and OpenGL are used for
the GUI and for the three-dimensional-graphics library, respectively. OpenGL is widely available on
both WSs and PCs, and now this is regarded as one of the standard graphics libraries. The TCP/IP
sockets are also used for the communication.

S ESTIMATING PERFORMANCE

The system is examined using the data of an elastic stress analysis with a-million-scale degrees of
freedom, and this analysis is performed on massively parallel processors, (Hitachi SR2201), by using
a code for parallel-finite-element analyses based on the domain decomposition method. Five VT-
Alphas (600MHz) for the parallel processing and a Pentiumll (450MHz) machine are connected to
communicate through a Fast Ethernet (100Mbps). Examples of visialization from static stress analysis
with a million DOSs scale are shown in Figure 8 and 9.

6 CONCLUSION

This study outlines a parallel visualization system, which can process ten-million degrees of
freedom. This system can process visual images without any interactiveness by parallel processing of
the graphics primitives with the aid of the data sampling method. Fundamental performances of the
developed system were demonstrated through the visualization of elasto static analysis results of one
million DOF ploblem.

REFERENCES

G.Yagawa, H.Kawai and S.Yoshimura (1993), Parallel CAE system for large-scale 3-D finite element,
Proc. of SMiRT-12, Stuttgart, Germany, Aug. 15-20, Vol. B, pp.183-194.

Cherri M. Panake (1996), Is Parallelism for You?, IEEE Computational Science & Engineering, Vol.3,
No.2, pp.19-37.

Pei-Wen Liu, Lih-Shyang Chen, Su-Chou Chen, Jong-Ping Chen, Fang-Yi Lin, Shy-Shang
Hwang(1996), Distributed Computing: New Power for Scientific Visualization, IEEE Computer
Graphics and Applications, Vol.16, No.3, pp.42-51.

Jaswinder Pal Singh, Anoop Gupta, and Marc Levoy (1994), Parallel Visualization Algorithms:
Performance and Architectural Implications, IEEE Computer, Vol.27, No.7, pp.45-55.

Michel Garland and Paul Heckbert (1997), Surface Simplification Using Quadric Error Metrics,
Proceedings of SIGGRAPH 97 (Los Angeles, California, August 3-8,1997), In Computer Graphics
Proceedings, Annual Conference Series, ACM SIGGRAPH, pp.209-216,

PARALLEL VISUALIZATION OF FINITE ELEMENT SOLUTIONS WITH TEN MILLION DOFS USING PC CLUSTER

IN A WINDOWS ENVIRONMENT

)

b

(

a)

(

)

d

(

lent stress from

iva
f a reactor pressure vessel model with a

lays of the equ

isp

d) Scalar field d

b

C
1C ana

3

8 (a,b

igure

F

1S O

lys

the elast

million DOFs.

Annual Report of
ADVENTURE Project

ADV-99-1 (1999)

S T
T

-

I
HHTL

i
L

lays of the equivalent stress from the

b

(

1sp
f a HTTR model with 1.2 mill

9 (a,b) Scalar field d

Figure

DOFs.

10n

ic analysis o

plast

elastic-

