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1 INTRODUCTION

The iterative Domain Decomposition Method(DDM) is one of the most e�ective parallel
methods for large scale problems due to its excellent parallelism and suitability for various
kinds of parallel computers such as massively parallel processors and workstation/PC

clusters [G.Yagawa and R.Shioya, 1994], [R.Shioya and G.Yagawa, 1998]. As the iterative

DDM satis�es continuity among subdomains through iterative calculations such as the
Conjugate Gradient(CG) method, it is indispensable to reduce the number of iterations

with a preconditioning technique especially for large problems.
The Neumann-Neumann algorithm(NN) is known to be an eÆcient domain decompo-

sition preconditioner with unstructured subdomains for an iterative solution of �nite ele-

ment discretization of diÆcult problems with strongly discontinuous coeÆcients [Y.H.De
Roeck and P.Le Tallec, 1991]. However, this algorithm su�ers from the need to solve in
each iteration an inconsistent singular problem for every subdomain, and its convergence

deteriorates with the increasing number of subdomains due to the lack of a coarse problem
to propagate the error globally.

The Balancing Domain Decomposition method(BDD) based on NN introduced by Man-

del [J.Mandel, 1993] shows that the equilibrium conditions for the singular problems on

subdomains lead to the simple and natural construction of a coarse problem. The con-
struction is purely algebraic and applies also to systems. In this report, an implementation
of BDD to static elastic stress analyses is presented and some numerical experiments are

performed.

In the following section, NN and BDD algorithms are presented, and the construction of
the preconditioner of BDD for the Schur complementmatrix is described. The application

of the present implementation for the stress analyses and estimation of eÆciency of BDD
are described in section 3.
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2 BALANCING DOMAIN DECOMPOSITION

2.1 Interface Problem

Consider a system of linear algebraic equations

Ku = f (1)

arising from a �nite element discretization of a linear, elliptic, self-adjoint boundary value

problem on domain 
. The matrixK is the sti�ness matrix and assumed to be an m�m,

symmetric positive de�nite matrix.

The domain 
 is split into non-overlapping subdomains 
(1); : : : ;
(k), each of which is
the union of certain elements. Let u(i) be the vector of degrees of freedom corresponding to

all elements in subdomain 
(i), and let N (i) denote the 0-1 matrix that maps the degrees
of freedom u(i) into global degrees of freedom; then

u(i) = N (i)Tu (2)

and

K =
kX

i=1

N (i)K(i)N (i)T (3)

where K(i) is the local sti�ness matrix corresponding to subdomain 
(i). Each u(i) is split
into degrees of freedom u

(i)
B that correspond to the interface of the subdomain 
(i) with

other subdomains, and the remaining degrees of freedom u
(i)
I , which are associated with

the subdomain 
(i) only. The subdomain sti�ness matrices and the 0-1 matrices N (i) are
then split accordingly and the system (1) is,
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and

N (i) = (N
(i)
I ; N

(i)
B ) (5)

After eliminating u
(i)
I , the system (1) becomes

SuB = g (6)

where S is the assembly of the Schur complements,

S =
kX

i=1

N
(i)
B S(i)N

(i)T
B ; S(i) = K

(i)
BB �K

(i)T
IB K

(i)�1
II K

(i)
IB (7)
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We assume that the subdomain matrices K(i) are symmetric and positive semide�nite,

with the submatricesK
(i)
II nonsingular. Then the Schur complements S(i) are also positive

semide�nite.

A large number of domain decomposition (or substructuring) methods consist of solving

the reduced system (6) iteratively [J.H.Bramble et al., 1989], [M.Dryja and O.B.Widlund,

1990]. Since S is symmetric positive de�nite, the preconditioned conjugate gradient

method [P.Concus et al., 1976], [G.H.Golub and C.F.Van Loan, 1989] is the standard

choice for iterative methods. This method requires at each step the solution of an auxil-

iary problem,

Mz = r (8)

with a symmetric positive de�nite matrix M , called a preconditioner.

The BDD preconditioner is a variation of the following preconditioner due to De Roeck
and Le Tallec [Y.H.De Roeck and P.Le Tallec, 1991], based on an earlier work for the case
of two subdomains [J.F.Bourgat et al., 1989] and a closely related method of Glowinski and

Wheeler for mixed problems [R.Glowinski and M.F.Wheeler, 1988]. It is also called the

Neumann-Neumann preconditioner(NN) because of an interpretation in terms of bound-
ary conditions on interfaces of the subdomains [M.Dryja and O.B.Widlund, 1990]. NN
algorithm is described in the next section.

2.2 Neumann-Neumann Preconditioning algorithm

The method uses a collection of matrices D(i) that form a decomposition of unity,

kX
i=1

N (i)D(i)N (i)T = I (9)

The simplest choice for D(i) is the diagonal matrix with diagonal elements equal to the
reciprocal of the number of subdomains with which the degrees of freedom is associated
[Y.H.De Roeck and P.Le Tallec, 1991].

Given r, compute M�1r as follows.

� Step 1: Distribute r to the subdomains 
(i)

r(i) = D(i)TN
(i)T
B r; i = 1; : : : ; k (10)

� Step 2: Solve the local problems for all subdomains

S(i)z(i) = r(i); i = 1; : : : ; k (11)

� Step 3 Average the local solutions on the interfaces
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z =
kX

i=1

N
(i)
B D(i)z(i) (12)

Unfortunately, K(i) and thus S(i) are typically singular. In this case, De Roeck and Le

Tallec [Y.H.De Roeck and P.Le Tallec, 1991] suggest modifying the Gaussian elimination

algorithm for solving (11) to avoid zero pivots and thus solve (11) only approximately.

A di�erent approximate solution was proposed by Dryja and Widlund [M.Dryja and

O.B.Widlund, 1990].

Another drawback of NN is the lack of a mechanism to exchange information between

all subdomains in the preconditioning step and thus to prevent the growth of the condition

number with the number of subdomains. Indeed, it was observed experimentally that the
condition number of NN algorithm deteriorates with the number of subdomains, and that

16 subdomains is a practical limit [P.Le Tallec et al., 1991]. In other domain decomposition
methods, the needed propagation of error has been accomplished by solving a coarse

problem with few degrees of freedom per subdomain in each iteration [J.H.Bramble et al.,
1986], [J.H.Bramble et al., 1989], [J.Mandel, 1990], [B.F.Smith, 1991], [B.F.Smith, 1992].
Such methods are similar to multi-grid methods and especially to two-level methods such

as in [O.Axelsson and I.Gustafsson, 1983], [C.Farhat, 1989] and [M.Kocvara and J.Mandel,
1987].

Several such coarse problems for the NN algorithm have been suggested in [M.Dryja
and O.B.Widlund, 1990], based on earlier coarse problems in di�erent contexts. A related
method was introduced and tested in a parallel environment by Farhat and Roux [C.Farhat
and F.X.Roux, 1991]. Their method enforces continuity on subdomain interfaces by

Lagrange multipliers and uses a coarse problem to obtain consistency of the singular

problems associated with subdomains.

Unlike the coarse problems in [M.Dryja and O.B.Widlund, 1990], no part of the BDD

algorithm needs to know what the faces, edges, or vertices of the subdomains are. The
subdomains can be completely unstructured, and the algorithm is formulated in purely

algebraic terms. The BDD algorithm is described in the next section.

2.3 Balancing Domain Decomposition algorithm

Given r, compute M�1r as follows.

� Step 1: Solving the auxiliary problem for unknown vectors �i

Z(i)TD(i)TN (i)T (r � S
kX

j=1

N
(j)
B D(j)Z(j)�(j)) = 0; i = 1; : : : ; k (13)

� Step 2: Balance the original residual r using �(j)
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s = r � S
kX

j=1

N
(j)
B D(j)Z(j)�(j); s(i) = D(i)TN

(i)T
B s; i = 1; : : : ; k (14)

� Step 3: Find any solution u(i) for each of the local problems

S(i)u(i) = s(i); i = 1; : : : ; k (15)

� Step 4: Balance the residual by solving the auxiliary problem for �(i)

Z(i)TD(i)TN (i)T (r � S
kX

j=1

N
(j)
B D(j)(u(j) + Z(j)�(j))) = 0; i = 1; : : : ; k (16)

� Step 4: Average the result on the interfaces

z =
kX

i=1

N
(i)
B D(i)(u(i) + Z(i)�(i)) (17)

where ni : dimension of K
(i)
IB, mi : 0 � mi � ni and Zi be ni � mi matrices of full

column rank such that

Null Si � Range Zi; i = 1; : : : ; k (18)

2.4 Zi for elastic problem

Using BDD, we should determine an eÆcient Zi which satis�es (18). For an elastic

problem, Null Si in (18) can be considered to correspond to the degrees of freedom of
rigid displacement. Let v(x) be the vector of rigid displacement; then

v(x) = a+ b� x (19)

where a = (a1; a2; a3) and b = (b1; b2; b3) are arbitrary vectors and x = (x1; x2; x3) is

the coordinates of a point. Let Vi be the space of the interface degrees of freedom for

the subdomain 
i, ni = dimVi, then at the point P (x1; x2; x3) on the interface of the

subdomain 
(i), (19) can be written as:

v(x) =

0
B@

1 0 0

0 1 0

0 0 1

1
CA
0
B@

a1
a2
a3

1
CA +

0
B@

0 x3 �x2
�x3 0 x1
x2 �x1 0

1
CA
0
B@

b1
b2
b3

1
CA (20)

Now let Z
(P )
i on P be de�ned as:
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Z
(P )
i �

0
B@

1 0 0 0 x3 �x2
0 1 0 �x3 0 x1
0 0 1 x2 �x1 0

1
CA (21)

and Zi be de�ned by assembling Z
(P )
i ,

Zi �

X
P2�i

B
(P )
i Z

(P )
i B

(P )T
i (22)

whereB
(P )
i is the 0-1 matrix that maps the degrees of freedom P into global degrees of free-

dom of the interface of the subdomain 
(i). Now, with arbitrary � = (a1; a2; a3; b1; b2; b3)
T ,

(19) becomes

v(P ) = Zi� (23)

and it satis�es (18). Numerical experiments with this Zi, are discussed in the following
section.

3 NUMERICAL EXPERIMENTS

The current system was applied to the �nite element analyses of two types of models, i.e.
the cubic and beam structures shown in Figures 1 and 3, respectively. These models are

expressed by a 10-noded tetrahedron elements.

For the cubic model, to estimate the relation between the number of iterations and
subdomains, this structure is divided into 8, 27 and 64 subdomains, each subdomain in-

cluding six elements. The size of models are 48, 162 and 384 elements and 125, 343 and 729
nodes, respectively. Using these three sizes of models, DDM without any preconditioner
and BDD are performed.

The degrees of freedom on the interface of the subdomain, which a�ects the number
of iterations for CG, and the number of iterations until convergence are shown in Table
1. Comparing with the increasing number of iterations for the number of subdomains in

case of DDM, that of BDD increases very little. The force imbalance measures within

the inter subdomain measure (residual value) are shown in Figure 2 in contrast to the

number of CG iterations.

For the beam model, this structure is modeled by 7,222 elements, 13,327 nodes, the
total degrees of freedom is 39,981 and the whole structure is divided into 148 subdomains.
The degrees of freedom of the interface of the subdomain is 14,484. For this model,

normal DDM without any preconditioner, DDM with diagonal preconditioner and BDD
are performed. Here, diagonal preconditioner is de�ned by assembling of diagonal elements

of Schur complements S(i) of (7).
To estimate the e�ect of the preconditioner, two types of boundary conditions are

tested, i.e., model 1: with only Dirichlet boundary condition type and model 2: with

Dirichlet and Neumann boundary condition types. These problems were solved by one
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processor, Ultra Sparc 1/200MHz with 512 MBytes memory and calculation times, the

number of iterations and memory usage of models 1 and 2 are shown in Tables 2 and 3,
respectively.

As shown in the tables, although BDD requires more memory than other methods,
reducing the number of iterations and speeding up the calculation time are achieved for

both cases.

The force imbalance measure within the inter subdomain measure (residual value) of

model 1 and model 2 are shown in Figures 4 and 5 in contrast to the number of CG

iterations.

4 CONCLUSIONS

The �nite element system based on the DDM with preconditioner using BDD was de-

veloped in the current study. This system can be applied to simple and small size of
structural analyses and e�ective performances were obtained. To apply for a larger model
like over ten million DOF problem, parallelising of the system and reducing memory usage

of BDD are required.
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Table 1: Number of Iterations of DDM & BDD for Cubic Model

Num of Dom D.O.F. of Interface DDM BDD

8 376 129 18

27 1,588 236 22
64 4,104 332 25

Table 2: Number of Iterations and Calculation Costs(Model 1)

Num of Iter. cpu time[hour] Memory [MByte]

DDM 3,517 43.0 4.4
SCALING 1,756 21.5 4.5

BDD 505 12.6 145.0

Table 3: Number of Iterations and Calculation Costs(Model 2)

Num of Iter. cpu time[hour] Memory [MByte]

DDM 2,163 26.4 4.4
SCALING 984 12.1 4.5

BDD 215 5.4 152.0
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Figure 1: Mesh of Box model
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Figure 2: Residual vs number of iterations
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Figure 3: Mesh of Beam model
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Figure 4: Residual vs number of iterations
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Figure 5: Residual vs number of iterations
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