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Abstract

Generations of hexahedral meshes, all of which are in good quality, seems almost
impossible and severely distorted finite elements are frequently generated so that the
numerical accuracy may be lost. Therefore, in this paper, the quality of generated
hexahedral meshes is firstly investigated by using several geometrical parameters,
which affect the accuracy of linear analyses. The enhanced assumed strain (EAS)
method, which originally proposed by Simo et al., possesses good coarse mesh and
distortion insensitivity properties. Then the accuracy of the EAS elements are is
secondly examined through the proposed quality tests in comparison to the
displacement based finite elements. The quality of meshes is evaluated by comparing
with the theoretical or convergent solution and by checking stress jumps at element
boundaries. Finally most critical geometrical parameters for generating hexahedral
meshes as well as the accuracy of the EAS elements are clarified statistically by the
proposed quality tests.

1 INTRODUCTION

In the last decades, a number of automatic mesh generators for finite elements have been
proposed so far. However, generation of hexahedral meshes, all of which are in good quality,
seems almost impossible and severely distorted finite elements are frequently generated so
that the numerical accuracy may be lost. Therefore, in this paper, the quality of generated
hexahedral meshes is firstly investigated by using several geometrical parameters, which
affect the accuracy of linear analyses.

On the other hand, it is known that low-order continuum finite elements exhibit poor
performance or lock in bending or nearly incompressible state and considerable attention has
been denoted to the development of low-order elements that exhibit high accuracy in even
coarse meshes. The enhanced assumed strain (EAS) method, which originally proposed by
Simo et al., possesses good coarse mesh and distortion insensitivity properties. Then the
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accuracy of the EAS elements are is secondly examined through the proposed quality tests in
comparison to the displacement based finite elements.

In the quality tests, hexahedral meshes are generated according to the value of new three-
dimensional distortion parameter in several benchmark problems including bending or nearly
incompressible state. The quality of meshes is evaluated by comparing with the theoretical or
convergent solution and by checking stress jumps at element boundaries. Finally most critical
geometrical parameters for generating hexahedral meshes as well as the accuracy of the EAS
elements are clarified statistically by the proposed quality tests.

The outline of this paper is as follows. In section 2 the finite element formulations of the
EAS method are briefly reviewed and in section 3 the parameters to estimate element
distortion are defined. In section 5 numerical examples are presented.

2 ENHANCED ASSUMED STRAIN METHOD

The variational basis of EAS method is well-known three-field Hu-Washizu principle. For
linear elasticity, it can be written as

|
M(ue.0)= | (&' Ce—c'e+0"Vu)dQ—W,(u) (1)

where u,€,0 represent displacement, strains and stresses, respectively. C stands for the
stress-strain matrix, V for the differential operator, and €, is the element domain. Keypoint
of the EAS method is the strain approximation

e=Vu+g 2

which means that compatible strain field are enhanced by incompatible strain field. Here
enhanced strain fields are chosen in a way that they are orthogonal to the stress field.

[o"gaQ=0 3)

Substituting eqn (2), (3) into eqn (1), the stress field is eliminated from eqn (1), as a
consequence, the final form for the internal energy can be obtained as follows:

I(u,§) = Lé(v ut€)" D(V ut §)dQ - W, (u) 4)

2.1 Finite element interpolations

Continuos displacement and enhanced strain fields are assumed as

u=Nd Q)
€=Ga (6)
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N is the matrix with the isoparametric shape functions and the d the vector of element
nodal displacements. G is the interpolation matrix and o the vector of internal strain
parameters. Substitution of the eqn (5), (6) into the functional of eqn (4) and variation with
respect to unknown parameters d and o results in the following system of equations:

2 Shao) ”

where
K= jQ{;T CBdQ (8)
is the usual stiffness matrix of a displacement method and D and L are defined as
D= jQqTCGdQ (9)
L= ngTCB dQ (10)

Condensation of the strain parameters o yields the element stiffness matrix
K'=K-L'D'L (11)

Which is further processed by the conventional assembly procedure.

3 EVALUATION OF DISTORTION

The first page must contain the Title, Author(s), Affiliation(s), Key words and the Abstract.
The second page must begin with the Introduction. The first line of the title is located 3cm
from the top of the printing box.

3.1 Generation of randomly generated meshes

The procedure to generate a mesh is shown in Figure. 1. Uniform and undistorted meshes
of size 2 is taken as a basis. Around every node of the undistorted mesh, a bounding sphere of
size 2a is defined, where a (0 < a < 0.9) a distortion parameter. The node is then moved on the
bounding sphere by randomly generated angles 6, (0<6, @< 2n). Geometrical parameters

for representing mesh distribution are calculated as follows.

3.2 Aspect ratio

Figure 2 shows a definition image of aspect ratio. If the shape of element is cube, the
aspect ratio is 1. The more distorted meshes are, the bigger the value of aspect ratio is. In the
case of more distorted mesh, the value of aspect ratio becomes bigger.
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3.3 Angle of normal vector

Angle shows an angle between the normal rectors on the surfaces which face each other.
As shown in Figure3, and if the angle is O the surfaces are parallel and if it becomes close to
larger, the mesh almost is severely distorted.

3.4 Flatness

As shown in figure 4, a surface is divided into two triangles and then. Flatness calculated
from normal vector (p;~p4) at each node point. The average angle between normal vectors at
nodes.

4 NUMERICAL ANALYSIS AND RESULTS

In the following example, 900 different randomly generated meshes are used for the
evaluation of the distorted elements. In the Figure 6, 7, 8, 10, 11 and 12, the average,
maximum and minimum values are plotted.

4.1 Incompressible bock

A regular incompressible block is considered with side lengths of 100 and a height of 50
(figure. 5). The structure is fixed at the bottom and loaded at the top by a uniform pressure
load of g=250/unit area acting on a center area of 20x 20 (Young’s module E=2.1x10,
Poisson’s ratio v =0.4999 ). Figure 5 shows the regular mesh, one of the distorted meshes and
the accuracy of analyses results. Figure 6, 7 and 8 show the variation of accuracy with respect
to these geometrical parameters. Table 1 shows the correlation coefficient of each geometrical
parameters. EAS-30 element avoids volumetric locking and possess higher accuracy than
element based on the displacement formulation (DISP). The accuracy of solution is well
expressed with geometrical parameters proposed in this paper from Figure 6 to Figure 8.
However each geometrical parameters have correlation each other deeply, the most critical
parameter can not be determined from this example.

4.2 Pinched hemispherical shell

Figure 11 shows one quarter of the hemispherical shell with a free edge pinched by two
couples of concentrated loads (RadiusR=10.0, thickness?=0.04, Young’s
module £ = 6.825x 10", Poisson’s ratio v = 0.3). Figure 9 shows the regular mesh, one of the
distorted meshes and the accuracy of analyses results. Figure 10, 11 and 12 show the variation
of accuracy with respect to these geometrical parameters. Table 2 shows the correlation
coefficient of the each geometrical parameters. From Figure 9, EAS-30 element possess
higher accuracy than DISP, in case of the regular mesh, the accuracy of solution is well
expressed with geometrical parameters proposed in this paper, as seen in Figure 10 to Figure
12. In this case, as shown in the Table 2, angles between normals on the surfaces facing each
other give great influence to the analyses results.
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5 CONCLUSION

From the analyses of several problems, this study allows the following conclusions:

(1) The EAS elements are much more robust than the elements based on displacement
approximation and those elements exhibit high accuracy in coarse meshes.

(2) In this study, angles of normal vector have most influence on the accuracy among
these geometrical parameters.
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Figure 1 Generation of Randomly Distorted Meshes
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Figure 2 Definition of Aspect Ratio
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Figure 3 Definition of Angle
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Figure 4 Definition of Flatness
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EAS-30 EAS-21 EAS-9 DISP
regular |0.01905 |0.01905 |(0.01136 |0.00160
irregular|0.01884 |0.01850 |0.01194 |0.00113

Figure 5 Model of incompressible block
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Figure 6 Flatness-accuracy curve (incompressible block)
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Figure 7 Aspect-accuracy curve (incompressible block)
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Figure 8 Angle-accuracy curve (incompressible block)
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Table 1 CORRELATION COEFFICIENT BETWEEN GEOMETRICAL PARAMETERS
(incompressible block)

flatness aspect 1 aspect 2 angle 1 angle 2 angle 3 accuracy
flatness
aspect 1 0.980
aspect 2 0.982 0.996
angle 1 0.987 0.988 0.989
angle 2 0.993 0.986 0.992 0.994
angle 3 0.990 0.983 0.986 0.992 0.994
accuracy | -0.537 -0.538 -0.542 -0.530 -0.548 -0./542

EAS-30 EAS-21 EAS-15 EAS-9 DISP

regular |1.003 1.003 1.003 0.881 0.0161

irregular|0.0878 0.0876 0.0869 0.0490 0.0112

Figure 9 Model of hemispherical shell
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Figure 10 Flatness-accuracy curve (hemispherical shell)

0.8

()
(@)
——i

Accuracy
o
~

0.2 J.'i\I\i\;H

O | |
1.1 1.15 1.2 1.25

Aspect 2

Figure 11 Aspect-accuracy curve(hemispherical shell)
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Figure 12 Angle-accuracy curve(hemispherical shell)

Table 2 CORRELATION COEFFICIENT BETWEEN GEOMETRICAL PARAMETERS

(hemispherical shell)
flatness aspect 1 aspect 2 angle 1 angle 2 angle 3 accuracy
flatness
aspect 1 -0.085
aspect 2 0.853 -0.900
angle 1 0.798 -0.944 0.945
angle 2 0.823 -0.954 0.952 0.989
angle 3 0.843 -0.956 0.959 0.985 0.987
accuracy -0.510 0.690 -0.736 -0.858 -0.831 -0.818




