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1 INTRODUCTION

For the last several years, we have been considering mixed �nite element approxima-

tions for three-dimensional eddy current problems, using the Nedelec element of simplex

type and the conventional piecewise linear tetrahedral element. These formulations are

extensions of some mixed ones proposed for magnetostatic and electrostatic problems;

see [Kikuchi, 1989a] and [Kikuchi, 1989b]. Up to the present, we have shown the e�ective-

ness of these formulations; see [Kanayama et al., 1997] and [Kanayama and Kikuchi, 1999].

These computations using a direct method to solve the resultant linear system have con-

sumed huge memories, disk spaces, and CPU time. This implies that an iterative solver

may be required for larger scale analyses; particularly for our present goal to solve mag-

netic �eld problems with about one million DOF.

In our mixed formulation introducing the Lagrange multipliers, the resultant linear

system is asymmetric and inde�nite, which causes diÆculties in choosing the iterative

solver. On the other hand, it is easy to �nd that these Lagrange multipliers turn out to be

zero. Therefore it is quite desirable to eliminate these extra quantities. So we introduce a

new formulation based on an initial step of the iterative scheme for magnetostatic problems

in [Kikuchi and Fukuhara, 1995]. Owing to this formulation, we show that some iterative

solvers are appropriate for magnetic �eld analyses.

This paper is organized as follows. In Section 2 we give a conventional formulation

of three-dimensional eddy current problems, which are known as the H-J formulation,

and propose a new one where the Lagrange multipliers are eliminated. In Section 3 we

introduce two models, and show their numerical results. Finally concluding remarks are

given in Section 4.
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2 FORMULATIONS

2.1 The H-J formulation

Let 
 be a domain consisting of a conducting region R and a non-conducting region S.

Here assume that 
, R and S are polyhedorons. Let us denote by @
 the boundary

of 
, and by � the interface between R and S. Let (0; T ) be a time interval. Using

the magnetic �eld H [A=m] and the eddy current Je [A=m2] as unknown functions, we

consider a three-dimensional eddy current problem:

8>>>>><
>>>>>:

rotH = Jo+ Je in R� (0; T ); (1a)

rotH = Jo in S � (0; T ); (1b)

div(�H) = 0 in 
� (0; T ); (1c)

rot(��1Je) = �@t(�H) in R� (0; T ); (1d)

div Je = 0 in R� (0; T ); (1e)

where Jo is an excitation current [A=m2], � is the permeability [H=m], and � is the

conductivity [S=m]. Throughout this paper, for simplicity, let us assume that � is a

piecewise positive constant, and that � is a positive constant.

On the interface �, the following conditions are imposed:

8><
>:

�
(�H) � n

�S
R
= 0; (2a)�

H � n
�S
R
= 0; (2b)

Je � n = 0; (2c)

where [ � ]SR denotes the di�erence between traces on � from S to R, and n denotes a unit

normal from S to R. On the boundary @
, the following condition is imposed:

(�H) � n = 0; (3)

where n denotes a unit normal from 
 to the boundary. Adding appropriate initial

conditions, the description of the problem is completed.

Let i be the imaginary unit, and ! the angular frequency [rad=s]. Replacing the

time derivative @t by �i!, we consider the sinusoidal �eld. As usual, considering that

all variables have complex values (for example H = Hr + iHi), we have the following

problem:8>>>>>><
>>>>>>:

rotHr = Jor + Jer; rotHi = Joi + Jei in R; (4a)

rotHr = Jor; rotHi = Joi in S; (4b)

div(�Hr) = 0; div(�Hi) = 0 in 
; (4c)

rot(��1Jer) = �!�Hi; rot(��1Jei) = !�Hr in R; (4d)

div Jer = 0; div Jei = 0 in R (4e)
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with the boundary conditions:8>>>><
>>>>:

�
(�Hr) � n

�S
R
= 0;

�
(�Hi) � n

�S
R
= 0 on �; (4f)�

Hr � n
�S
R
= 0;

�
Hi � n

�S
R
= 0 on �; (4g)

Jer � n = 0; Jei � n = 0 on �; (4h)

(�Hr) � n = 0; (�Hi) � n = 0 on @
; (4i)

where each subscript r (or i) denotes the real (or imaginary) part of each variable.

As usual, let L2(
) be the space of functions de�ned in 
 and square summable in 
,

and H1(
) the space of functions in L2(
) with derivatives up to the �rst order. Let us

denote by ( � ; � )
 and by ( � ; � )R the inner product of L2(
) and L2(R), respectively.

Recall some function spaces introduced in [Kikuchi and Fukuhara, 1995]:

L2(
; �) � L2(
) equipped with the norm kvk� � k�1=2vkL2(
);

H(rot; 
; �) �
�
v 2 L2(
; �)3; rot v 2 L2(
)3

	
;

H(rot; 
) � H(rot; 
; 1):

The magnetic �eld, the eddy current, and the Lagrange multipliers are sought from the

following spaces:

T = H(rot;R); U = H1(R); V = H(rot; 
; �); W = H1(
):

We consider the weak formulation of (4): given Jor, Joi 2 L2(
)3, �nd Jer, Jei 2 T ,

qr, qi 2 U , Hr, Hi 2 V , and pr, pi 2 W such that8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

(rotHr; rotH
�

r )
 + (grad pr; �H
�

r )


= (Jor; rotH
�

r )
 + (Jer; rotH
�

r )R for H�

r 2 V; (5a)

(rotHi; rotH
�

i )
 + (grad pi; �H
�

i )


= (Joi; rotH
�

i )
 + (Jei; rotH
�

i )R for H�

i 2 V; (5b)

(�Hr; grad p
�

r)
 = 0 for p�r 2 W; (5c)

(�Hi; grad p
�

i )
 = 0 for p�i 2 W; (5d)

(rot(��1Jer); rotJe
�

r)R + (grad qr; Je
�

r)R

= �(!�Hi; rotJe
�

r)R for Je�r 2 T; (5e)

(rot(��1Jei); rotJe
�

i )R + (grad qi; Je
�

i )R

= (!�Hr; rotJe
�

i )R for Je�i 2 T; (5f)

(Jer; grad q
�

r )R = 0 for q�r 2 U; (5g)

(Jei; grad q
�

i )R = 0 for q�i 2 U: (5h)

Although they are determined up to an additive constant, the Lagrange multipliers may

vanish, which is proved easily by setting H�

r = grad pr, H
�

i = grad pi, Je
�

r = grad qr, and

Je�i = grad qi.
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We consider the decomposition of 
 into tetrahedrons, and approximate the magnetic

�eld and the eddy current by the Nedelec element of simplex type and the Lagrange

multipliers by the conventional piecewise linear element. We consider the mixed �nite

element approximation of (5): �nd Jerh, Jeih 2 Th, qrh, qih 2 Uh, Hrh, Hih 2 Vh, and prh,

pih 2 Wh such that

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

(rotHrh; rotH
�

rh)
 + (grad prh; �H
�

rh)


= (Jor; rotH
�

rh)
 + (Jerh; rotH
�

rh)R for H�

rh 2 Vh; (6a)

(rotHih; rotH
�

ih)
 + (grad pih; �H
�

ih)


= (Joi; rotH
�

ih)
 + (Jeih; rotH
�

ih)R for H�

ih 2 Vh; (6b)

(�Hrh; grad p
�

rh)
 = 0 for p�rh 2 Wh; (6c)

(�Hih; grad p
�

ih)
 = 0 for p�ih 2 Wh; (6d)

(rot(��1Jerh); rotJe
�

rh)R + (grad qrh; Je
�

rh)R

= �(!�Hih; rotJe
�

rh)R for Je�rh 2 Th; (6e)

(rot(��1Jeih); rotJe
�

ih)R + (grad qih; Je
�

ih)R

= (!�Hrh; rotJe
�

ih)R for Je�ih 2 Th; (6f)

(Jerh; grad q
�

rh)R = 0 for q�rh 2 Uh; (6g)

(Jeih; grad q
�

ih)R = 0 for q�ih 2 Uh; (6h)

where subscript h denotes approximate functions and spaces. As in the continuous case,

the Lagrange multipliers vanish again.

2.2 ITERATION METHOD

Let � be a positive constant. For the weak formulation (5), let us consider a perturbation

problem: �nd Jer, Jei 2 T , qr, qi 2 U , Hr, Hi 2 V , and pr, pi 2 W such that

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

(rotHr; rotH
�

r )
 + (grad pr; �H
�

r )
 + �(�Hr; H
�

r )


= (Jor; rotH
�

r )
 + (Jer; rotH
�

r )R for H�

r 2 V; (7a)

(rotHi; rotH
�

i )
 + (grad pi; �H
�

i )
 + �(�Hi; H
�

i )


= (Joi; rotH
�

i )
 + (Jei; rotH
�

i )R for H�

i 2 V; (7b)

(�Hr; grad p
�

r)
 = 0 for p�r 2 W; (7c)

(�Hi; grad p
�

i )
 = 0 for p�i 2 W; (7d)

(rot(��1Jer); rotJe
�

r)R + (grad qr; Je
�

r)R + �(Jer; Je
�

r)R

= �(!�Hi; rotJe
�

r)R for Je�r 2 T; (7e)

(rot(��1Jei); rotJe
�

i )R + (grad qi; Je
�

i )R + �(Jei; Je
�

i )R

= (!�Hr; rotJe
�

i )R for Je�i 2 T; (7f)

(Jer; grad q
�

r )R = 0 for q�r 2 U; (7g)

(Jei; grad q
�

i )R = 0 for q�i 2 U: (7h)
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As in Subsection 2.1, the Lagrange multipliers vanish again. So we obtain the following

problem that does not include the Lagrange multipliers: �nd Hr, Hi 2 V and Jer, Jei 2 T

such that8>>>>>>>>>>>><
>>>>>>>>>>>>:

(rotHr; rotH
�

r )
 + �(�Hr; H
�

r )


= (Jor; rotH
�

r )
 + (Jer; rotH
�

r )R for H�

r 2 V; (8a)

(rotHi; rotH
�

i )
 + �(�Hi; H
�

i )


= (Joi; rotH
�

i )
 + (Jei; rotH
�

i )R for H�

i 2 V; (8b)

(rot(��1Jer); rotJe
�

r)R + �(Jer; Je
�

r)R

= �(!�Hi; rotJe
�

r)R for Je�r 2 T; (8c)

(rot(��1Jei); rotJe
�

i )R + �(Jei; Je
�

i )R

= (!�Hr; rotJe
�

i )R for Je�i 2 T: (8d)

Using the Nedelec element of simplex type, we propose an approximation problem that

does not include the Lagrange multipliers: �nd Hrh, Hih 2 Vh and Jerh, Jeih 2 Th such

that 8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(rotHrh; rotH
�

rh)
 + �(�Hrh; H
�

rh)


= (Jor; rotH
�

rh)
 + (Jerh; rotH
�

rh)R for H�

rh 2 Vh; (9a)

(rotHih; rotH
�

ih)
 + �(�Hih; H
�

ih)


= (Joi; rotH
�

ih)
 + (Jeih; rotH
�

ih)R for H�

ih 2 Vh; (9b)

(rot(��1Jerh); rotJe
�

rh)R + �(Jerh; Je
�

rh)R

= �(!�Hih; rotJe
�

rh)R for Je�rh 2 Th; (9c)

(rot(��1Jeih); rotJe
�

ih)R + �(Jeih; Je
�

ih)R

= (!�Hrh; rotJe
�

ih)R for Je�ih 2 Th: (9d)

The original algorithm in [Kikuchi and Fukuhara, 1995] goes on to an iterative step

using the solution of (9) as initial functions. From practical point of view, an appropriate

choice of � implies that the solution of (9) is correct enough. Therefore, in this paper, we

consider only the \initial step" (9).

3 COMPUTATIONAL MODEL

3.1 A cake model

Let us consider an in�nite solenoidal coil including a conductor with radius 0:1 [m]; see

Figure 1. By its symmetry, it suÆces to consider only a sectoral domain as in Figure 2; so

this model is called a \cake" model. This model is a three-dimensional extension of one

described in [Nakata and Takahashi, 1986]. The permeability � is 4� � 10�7 [H=m], the

conductivity � is 7:7� 106 [S=m], the frequency f is 60 [Hz] (! = 2�f), and the absolute

value of the real (or imaginary) part of the excitation current jJorj (or jJoij) is 50 (or 0)

[A=m2]. The numerical parameter � is 1:0� 10�4.
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The model is considered only in a sectoral domain whose central angle is 20Æ, and

the domain is decomposed into tetrahedrons; see Figure 2. The number of nodal points,

elements and DOF are 695, 324 and 1772, respectively. Let �1 be the cross-section

including the z-axis, and �2 a union of the upper plane, the bottom plane and the surface

of the cylinder. The following boundary conditions are imposed on @
, though these

conditions are slightly di�erent from those in (3):�
(�H) � n = 0 on �1 \ @
; H � n = 0 on �2 \ @
; (10a)

Je� n = 0 on �1 \ @R; Je � n = 0 on �2 \ @R; (10b)

where @R is the boundary of R. Boundary conditions on � are described in (2). Com-

putation was performed on Sun UltraSPARC 200MHz with 1 CPU by using the PETSc

library (see [Balay et al., 1998]) as for solvers.

At �rst we compare the present results by the formulation (9) with the previous ones

by the conventional H-J formulation in [Kanayama et al., 1998]. In the present results,

LU decomposition is used. Figure 3 shows the z component of the approximate magnetic

�eld Hrh in the conductor versus the radius r along the line with � = 10Æ and z = 0:05m.

A solid line denotes the present results, and the broken line denotes the previous ones.

The present results almost agree with the previous ones.

Next we investigate the reliable iterative solver for the resultant linear system. Un-

fortunately, as for the conventional H-J formulation, there is no reliable iterative solver

which is still e�ective for larger problems. Here two iterative solvers are chosen; one is

a restart version of the Generalized Minimum Residual method (GMRES(m)) where the

restart value of the iteration m is 100, 1772; the other is BiConjugate Gradient Stabi-

lized method (Bi-CGSTAB). As for the preconditioner, the incomplete LU factorization

of level zero (ILU(0)) and the Jacobi preconditioner are used. Zero vector was chosen as

the initial vector of each iterative solver. Each process was stopped as soon as the resid-

ual norm kM�1(b � Ax)k
Æ
kM�1bk with the preconditioner M was reduced by a factor

of " = 10�7. Figure 4 shows the pro�les of the residual norm kM�1(b � Ax)k
Æ
kM�1bk

versus the number of iterations. With each iterative solver, iteration for the resultant

linear system converges except for GMRES(100) with the Jacobi preconditioner. Figure 4

also shows that GMRES(m) is better than Bi-CGSTAB.

3.2 TEAM Problem 7

Let us consider a benchmark problem, Problem 7, given by the Testing Electromagnetic

Analysis Methods (TEAM) Workshop. Problem 7 is a three-dimensional eddy current

problem of asymmetrical conductor with a hole; see Figure 5. The permeability � is

4� � 10�7 [H=m], the conductivity � is 3:526� 107 [S=m], the frequency f is 50 [Hz] (! =

2�f), and the absolute value of the real (or imaginary) part of the excitation current jJorj

(or jJoij) is 1:0968� 106 (or 0) [A=m2]. The numerical parameter � is 1:0� 10�4.

As in Figure 6, the domain 
 is decomposed into tetrahedrons. The number of nodal

points, elements and DOF are 85833, 60000 and 170133, respectively. Since the domain
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 is large enough, we assume that the normal component of the magnetic ux density

vanishes on the whole boundary @
. Boundary conditions on � are described in (2).

Computation of the TEAM model was performed on an Alpha cluster with 10 CPUs in

the ADVENTURE project. GMRES(2000) with the Jacobi preconditioner in the PETSc

library is used to solve the resultant linear system. From the results in the cake model,

ILU(0) may be better than Jacobi. However, the Jacobi preconditioner is used here,

because the ILU(0) preconditioner goes wrong in the parallel computing on the Alpha

cluster now. Zero vector was chosen as the initial vector of GMRES(2000).

Figure 7 shows the pro�les of the residual norm kM�1(b � Ax)k
Æ
kM�1bk versus the

number of iterations. The residual becomes smaller until the restart number 2000.

4 CONCLUDING REMARKS

We have introduced a new scheme for three-dimensional eddy current problems based on

the initial step of an iteration scheme for magnetostatic problems.

At �rst we have compared the present results by the new scheme with the previous

ones by the conventional H-J formulation, and have shown that the present results almost

agree with the previous ones. Next we have investigated reliable iterative solvers of the

resultant linear system. Thanks to the formulation where the Lagrange multipliers are

eliminated, we have avoided diÆculties with respect to the inde�niteness of matrices.

Therefore, we have shown that, by GMRES(m) and Bi-CGSTAB (with both ILU(0) and

Jacobi preconditioners), iteration for the resultant linear system converges. Finally we

have considered Problem 7 in TEAM Workshop. Using GMRES(2000) with the Jacobi

preconditioner, we have solved the resultant linear system.

As stated above, we have been investigating new formulations where the Lagrange

multipliers are eliminated. In the case of magnetostatic problems, Conjugate Gradient

method (CG) can be used to solve the resultant linear system, which implies the possi-

bility of larger scale analyses. So we are trying problems with hundreds thousands DOF.

Although scale of this computation is not small, it is not enough for our present goal.

Therefore we are also trying to apply domain decomposition method to magnetic �eld

analyses.
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Figure 1: An in�nite solenoidal coil.
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Figure 2: A �nite element mesh for the \cake" model.
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Figure 3: The z component of the approximate magnetic �eld Hrh in the conductor.
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Figure 4: The pro�le of the residual norm kM�1(b�Ax)k
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kM�1

bk versus the number of iterations.

11



LARGE-SCALE MAGNETIC FIELD ANALYSES

Figure 5: Asymmetrical conductor with a hole in TEAM Problem 7.

Figure 6: A �nite element mesh around the coil and the conductor for the TEAM model.
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Figure 7: The pro�le of the residual norm kM�1(b�Ax)k
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bk versus the number of iterations.
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