
ADVENTURE_Solid

HDDM solver for static elastic / elasto-plastic / large deformation stress analyses

Version: β − 0.81

User Manual

May 21, 2001

ADVENTURE Project

2

Contents

1. Outline... 4

2. Parallel Processing and Domain Decomposition Methods 7
2.1. Parallel Processing Methods and Number of “Parts” 8
2.2. How to Decide the Number of Domain Decompositions 13

3. Analysis Functions... 15
3.1. Common Functions in Analyses .. 15

3.1.1. Function of Parallel Processing 15
3.1.2. Elements .. 15
3.1.3. Boundary Conditions .. 16
3.1.4. Volumetric Force... 16

3.2. Functions in Linear Elastic Analysis................................... 16
3.2.1. Modeling of Material ... 16
3.2.2. Output Results.. 17

3.3. Functions in Nonlinear Analysis... 17
3.3.1. Elasto-Plastic Analysis Modeling 17
3.3.2. Control of Increment Step ... 19
3.3.3. Output Results.. 19

4. Input and Output Data ... 20
4.1. Flow of Input/Output Data Processing 20
4.2. About the Unit System... 21
4.3. Processes of Input and Output .. 21
4.4. Input Data.. 22

4.4.1. Mesh File.. 22
4.4.2. FEM Analysis Model (Entire Type) 24
4.4.3. Domain Decomposition of FEM Analysis Model.......... 25

4.5. Analysis Results File ... 25
4.5.1. Output Physical Quantities ... 25
4.5.2. Post Processing of Analysis Results 27

5. Execution Method ... 28
5.1. Filenames for Input and Output ... 29

3

5.2. Program Options ... 29
5.2.1. Specification of Type of Analysis................................. 29
5.2.2. Options Related to Elements 30
5.2.3. Options for Data Input and Output 31
5.2.4. Increment Step Control Options.................................. 34
5.2.5. Control Options for Iteration Methods 36
5.2.6. Options for Changing of Input and Output Filenames . 38
5.2.7. Other Options ... 40

5.3. Script advsolid for ADVENTURE_Solid Execution............. 40

6. Program Compilation and Installation...................................... 44
6.1. Program Compilation... 44
6.2. Program Installation .. 47

Appendix.. 48

A. Allowable Types of Elements... 48
A.1. Linear Tetrahedral Element ... 49
A.2. Quadratic Tetrahedral Element.. 50
A.3. Linear Hexahedral Element... 52
A.4. Quadratic Hexahedral Element ... 54

B. Tools ... 56
B.1. Converter of Analysis Results to Entire Type Data

(hddmmrg) ... 56
B.2. ADVENTURE Format File Viewer (advshow).................... 59
B.3. Analyzer (log2*) of Log File Created by advsolid............... 60

C. Method of Using MPICH ... 62
C.1. Preparation ... 62
C.2. Execution.. 63

References .. 64

4

1. Outline

The ADVENTURE_Solid module is a finite element method analysis solver

designed in the ADVENTURE Project [1] to perform the solid static analysis using

Hierarchical Domain Decomposition Method (HDDM) [2, 3, 4] and parallel data

processing. The ADVENTURE_Solid module has the following main features:

• Dynamic or static load distribution can be obtained using Hierarchical Domain

Decomposition Method (HDDM) with execution on single CPU and parallel

network-connected computers.

• It can perform the elastic, elasto-plastic, and geometric nonlinear stress analyses.

• The incremental load/displacement control method is used for the elasto-plastic/

nonlinear geometry analyses.

• Large increment width is possible by stress integration using the backward Euler

method.

• Quick convergence at each increment step is reached by using the tangential

stiffness, according to the Newton-Raphson method.

• Linear tetrahedral, linear hexahedral, quadratic tetrahedral, and quadratic hexahedral

elements can be treated.

• The module is designed for UNIX and LINUX platforms.

• Using the parallel processing computer library MPI [5], the program can operate in

various parallel computing environments using network-connected PC, workstations

and MPPs (Massively Parallel Processors).

The operational flowchart of ADVENTURE System is shown in Fig. 1.

1. Preparation of the mesh data (ADVENTURE_TetMesh)

5

The ADVENTURE_TetMesh module performs mesh decomposition of the analyzed

object. Other programs for mesh decomposition can be used changing the

corresponding data format.

2. Setup of the boundary conditions (ADVENTURE_BCtool)

Corresponded boundary conditions added to the mesh and the material properties

are set up using the ADVENTURE_BCtool module.

3. Decomposition of domain (ADVENTURE_Metis).

The ADVENTURE_Metis module decomposes an entire type analysis model.

Parallel processing is possible.

4. FEM analysis (ADVENTURE_Solid).

The ADVENTURE_Solid module performs finite element method analysis using

the decomposed analysis model prepared at the earlier step. Parallel processing is

possible.

5. Post system (ADVENTURE_Visual).

The ADVENTURE_Visual module visualizes the analysis results. Parallel

processing is possible.

MPI is required for parallel operation of ADVENTURE_Solid in UNIX or Linux

computing environments. The freely available MPICH [6] (an implementation of the

MPI standard) supports many computing environments, however another programs for

the MPI standard can be used. For operation of ADVENTURE_Solid in a single mode,

MPI is not necessary.

6

Fig. 1. Operational flowchart

ADVENTURE_Visual
Visualization system

ADVENTURE_Solid
Parallel Solver

ADVENTURE_Metis
Domain Decomposition

Mesh

ADVENTURE_BCtool
Boundary Conditions Setup

Analysis Model
(Entire Type)

Analysis Model
(Decomposed Type)

Analysis Model
(Decomposed Type)

ASCII File

ADVENTURE
Format File

Single Module

Parallel Module

7

2. Parallel Processing and Domain Decomposition
Methods

In the ADVENTURE_Solid module, parallel processing using the hierarchical

domain decomposition method is possible. Fig. 2 shows the hierarchical domain

decomposition of the entire model. The model is decomposed in two steps. Large

decomposed unit of the first hierarchy level refers as “Part”, and smaller unit(s) of the

decomposed “Part” (2nd hierarchy level) refer(s) as “Domain(s)”.

Domain decomposition is performed by ADVENTURE_Metis prior to operation of

ADVENTURE_Solid. The details are given in the ADVENTURE_Metis User Manual.

Several methods are prepared in ADVENTURE_Solid to treat the assignment of each

decomposed domain to the network node (process) in the most effective way. In order to

optimize the use of computer memory and computing time, the USER should consider

optimum domain decomposition.

MPI is used as parallel libraries for ADVENTURE_Solid and at the starting time of

execution, the number of processes started at once will be decided in according to the

environment settings defined by the USER. Commonly, one process is assigned for one

CPU, however a number of processes can be also assigned to one CPU. Here, the terms

“node”, “process”, and “CPU” are used for convenience without any special

distinctions.

Fig. 2. Hierarchical domain decomposition

Domain

Entire Model

Part 1 Part 2 Part 3

Decomposed Domains

8

2.1. Parallel Processing Methods and Number of “Parts”

Depending on parallel processing methods, three executable programs are prepared

in the ADVENTURE_Solid module. Each executable program requires special domain

decomposition that will be described below.

1. Single version (advsolid-s)

The calculation is performed as a single process. MPI is not required for the

program compilation and execution. There are no limitations on numbers of

“Parts” or “Domains”; the model prepared for parallel computation can be used

for the single processor without adjustments (Fig. 3). In the single processor,

computational and data reprocessing procedures for each “Part” occur in the same

order as it would be occurred in the parallel computing system. If parallel

computation is not performed well, the single version of the program can be used

as a “checker”.

Fig. 3. Adjustment of domains to CPU (Single version)

2. Static load distribution version (advsolid-p)

As it is shown in Fig. 4, the calculations are performed in parallel and the

processes are assigned statically. One process is automatically assigned for one

“Part” prior to program execution, and, in this case, to decrease network

communications between nodes, the number of “Parts” should be equal to the

number of network nodes. This version works efficiently if all nodes have the

same performance (uniform system).

“Part” 0 “Part” 1

“Domain” 0

“Domain” 1

“Domain” 2

“Domain” 3

“Domain” 4

“Domain” 5

CPU 1

9

Fig. 4. Adjustment of domains to CPUs (Static load distribution version)

“Part” 0

“Domain” 0

“Domain” 1

CPU 1

“Part” 1

“Domain” 2

“Domain” 3

CPU 2

“Part” 2

“Domain” 4

“Domain” 5

CPU 3

“Part” 3

“Domain” 6

“Domain” 7

CPU 4

“Part” 4

“Domain” 8

“Domain” 9

CPU 5

10

3. Dynamic load distribution version (advsolid-h)

The treatment of “Parts” and “Domains” is accomplished dynamically when

the domain-decomposed data prepared by ADVENTURE_Metis are read by

ADVENTURE_Solid and subdivided between CPUs in the way that one “Part” will

be assigned for one CPU and the remained CPUs will be used for treatment of

“Domains” (Fig. 5). Here, such sharing will be referred as the “Parent” process and

the “Child” process. The “Child” processes do necessary calculations of “Domains”

and, later, the “Parent” process handles the calculated results. The number of “Parts”

should be less than the total number of CPUs considered for calculation. Since the

communications will be concentrated on the “Parent” nodes, the efficiency will be

decreased if the number of the “Child” nodes is much larger than the number of the

“Parent” nodes. To overcome this problem, the “Parent” nodes are also considered

to work in parallel and processing of “Parents” can also be distributed.

Since the “Child” nodes will perform many calculations, the jobs assignment

direction should be selected in order to get maximum performance. For example, if

10 CPUs are used, it is better to assign 1 or 2 “Parent” nodes and large job should be

assigned to the remained “Child” nodes.

The balance of calculation work can be dynamically adjusted, however the

total performance of this job distribution method is worse than that of the static load

distribution method for uniform computer environments due to large data transfer by

network communications. The dynamic load distribution is well suited for non-

uniform computer environments. The “Parent” and the “Child” processes are always

shifted in time and can be done by the same CPU on one network node. In this case,

the processes should be subdivided in the following manner: the “Parent” process

should have the MPI rank from 0 to Npart – 1, and the “Child” process should have

the MPI rank from Npart to Nproc – 1, where Npart is the number of “Parts” and Nproc is

the number of processes. For example, if 8 nodes will be used to distribute 2

“Parent” and 8 “Child” processes, the total number of execution processes will be

10. The following figure shows a part of setup file (for mpich ch_p4 device)

machine_file for assigning host names, which should be set up by the USER

(See Appendix C). 10 processes will be started at once: 2 “Parent” processes and 8

“Child” processes. First two lines are corresponded to the “Parent” processes.

host0 and host1 here take the functions of “Parent” and “Child” simultaneously.

For detailed information on the setup procedures, refer to the MPI-related

documents. It should be mentioned that depending on computing environments and

programs for the MPI standard implementation, the data transfer could be slowed

11

down.

host0
host1
host0
host1
host2
host3
host4
host5
host6
host7

1
2
3
4
5
6
7
8
9
10

12

Fig. 5. Adjustment of “Domains” to CPUs (Dynamic load distribution version)

“Part” 1

“Domain” 5

“Domain” 6

CPU 2

“Domain” 4

“Domain” 7

Parent 2

“Part” 0

“Domain” 1

“Domain” 2

CPU 1

“Domain” 0

“Domain” 3

Parent 1

“Domain” 2

“Domain” 3

CPU 3

“Domain” 0

“Domain” 4

CPU 4

“Domain” 1

“Domain” 6

“Domain” 7

CPU 5

“Domain” 5

Child 1 Child 2 Child 3

13

2.2. How to Decide the Number of Domain Decompositions

The previous chapter was devoted to the common features and basic principles of

job assigning processes of the ADVENTURE_Solid module depending on the parallel

processing environments. Basically, the number of “Parts” should be decided based on

the method used for parallel processing, the number of nodes used in a network, and the

computing environments. Since, computing time may not be optimal due to the

difference in memory consumption by the nodes for the “Parent” and “Child” processes,

even if their number is equal, the proper domain decomposition should be done to

increase the computational performance.

The number of “Domains” should be decided taken into account the memory used

by computation processes. The stiffness matrixes (and their inversed matrixes) are

memorized for each “Domain” applying the Skyline method that occupies the largest

memory volume. As more detailed domain decomposition is done, as less memory is

required.

In the case of using the Static load distribution version of ADVENTURE_Solid, the

number of “Parts” and network nodes decides the amount of data transfer; and the

USER should not consider about the speed of data transfer.

Combinations of the following methods are used in ADVENTURE_Solid, and the

computing time is strongly dependent on the method applied and the number of

“Domains”. The Direct method is used to obtain the displacement inside “Domain” and

the Iterative CG method is used to obtain the displacement on the boundaries between

Domains”. The computing time for 1 CG step will be as shorter as more detailed

decomposition of the “Domain” is done, because the ratio of the Direct method use in

total combination of methods will be decreased. To reach the convergence using less

iteration steps, rough domain decomposition is preferable; otherwise, the ratio of Direct

method used will be high that will require more time for computation. The total

computing time varies depending on many factors. The number of iteration steps to

reach desired convergence depends on boundary conditions. It was found that the

convergence occurs faster if many displacement boundary conditions (Dirichlet

boundary conditions) are set. From the experience, it can be said that if many Dirichlet

boundary conditions are set, detailed domain decomposition will be preferable to

decrease the total computing time. However, there is an optimum for the number of

decomposed “Domains” and Dirichlet boundary conditions that influence on the

computing time.

If very detailed domain decomposition by ADVENTURE_Metis is done, some

14

elements may not be included into “Domain” that will result in errors and termination of

the ADVENTURE_Solid module. In order to avoid such situations, the number of

elements in one “Domain” after decomposition should be not less than 20.

Good performance can be achieved if the number of elements in one “Domain” lies

between 20 and 100. The number of elements in one “Domain” should be small if many

displacement boundary conditions are set, and, the number of elements in one

“Domain” can be large if few displacement boundary conditions are set. If the

“Domain” consists of linear tetrahedral elements, which have the smallest number of

nodes, the large number of these elements is preferable.

The number of elements in a “Domain” that should be created by

ADVENTURE_Metis module can be calculated using the following equation:

domainpart

element

NN

N
n

×
= (1),

where: n is the number of elements in the considered “Domain” (should be within the

interval from 20 to 100),

Nelement is the total number of elements,

Npart is the number of “Parts”,

Ndomain is the number of “Domains” in the “Part”.

Compared with the static load distribution method, much data transfer between the

“Parent” and the “Child” is accomplished in the case of dynamic load distribution

method. The volume of data transfer depends on the way of domain decomposition. I.e.,

as more detailed domain decomposition is done, as much data transfer is required

between the processes to adjust the boundaries between and within “Domains”. The

speed of data transfer depends on the network environment and generally, the static load

distribution method results in better performance for uniform computer environments.

15

3. Analysis Functions

The ADVENTURE_Solid module can perform the elastic, elasto-plastic, large-

displacement and large-strain analyses in nonlinear geometry taking into account

material characteristics. The possible combinations of these analyses are:

• Linear elastic analysis;

• Large-displacement small-strain elastic analysis (Total Lagrange method);

• Large-displacement large-strain elastic analysis (Updated Lagrange method);

• Elasto-plastic analysis;

• Large-displacement small-strain elasto-plastic analysis (Total Lagrange method);

• Large-displacement large-strain elasto-plastic analysis (Updated Lagrange method).

These analyses can be performed with the functions described below.

3.1. Common Functions in Analyses

3.1.1. Function of Parallel Processing

The mentioned analyses can be performed by 3 methods depending on computer

environments:

• Program execution using a single CPU;

• Program execution using static load distribution method for parallel data processing;

• Program execution using dynamic load distribution method for parallel data

processing.

3.1.2. Elements

Four types of solid elements listed below are supported (Appendix A). The model

for analysis should contain the same type of elements because their co-existence is not

supported in the current version.

16

• Linear tetrahedral element (1 integral point)

• Quadratic tetrahedral element (4 or 5 integral points)

• Linear hexahedral element (8 integral points, reduced integration related to

volumetric strain)

• Quadratic hexahedral element (27 integral points)

3.1.3. Boundary Conditions

The following boundary conditions can be applied:

• Node forced displacement;

• Node concentrated load (the surface load can be converted to the node-concentrated

load by the ADVENTURE_BCtool module).

3.1.4. Volumetric Force

It is possible to add the deadweight depending on gravity.

3.2. Functions in Linear Elastic Analysis

3.2.1. Modeling of Material

The following uniform and isotropic material properties can be applied:

• Young’s Modulus;

• Poisson’s Ratio;

• Material Density (if gravity setup option is used).

17

3.2.2. Output Results

Depending on selected program options for analysis, the following data can be

obtained:

• Displacement (node);

• Reaction force (node);

• Stress tensor (element / integration point / node);

• Equivalent stress (element / integration point / node);

• Strain tensor (element / integration point / node).

3.3. Functions in Nonlinear Analysis

The loads and displacements are assumed as increments according to the Strain

increment theory to perform the increment nonlinear analyses. Information on

formulations of the method can be found in [4] and [7]. The data processing is

accomplished by 3 large loops as it is shown in Fig. 6. The outside loop is the loop for

the load increment. A repetition by the Newton-Raphson method using the Consistent

tangential stiffness is performed in the inside increment loop. It made possible to take

comparatively large increment step. CG iterations used in the hierarchical domain

decomposition method are performed inside the Newton-Raphson loop.

3.3.1. Elasto-Plastic Analysis Modeling

The bi-linear type stiffening functions for the von Mises yield conditions are applied

for modeling in the elasto-plastic analysis. The following material properties can be

used in addition to the properties for the elastic analysis:

• Work hardening coefficient;

• Initial yield stress.

18

Fig. 6. Flowchart of processes in nonlinear analysis

Start

Static analysis
of each domain

Updating of domain interface
boundary conditions

Stress integration

HDDM

Updating of load increment

End

Iteration
by
CG

method

Iteration
by

Newton-
Raphson
method

Load
incrementation

loop

19

3.3.2. Control of Increment Step

The USER should appropriately set the increment step and the interval width, which

can be controlled. Large increment can be set for the initial steps and smaller increment

should be set for the further steps. Necessary information can be found in Chapter 5.2.4.

3.3.3. Output Results

In addition to the output of the linear elastic analysis, the following output results

can be obtained for each increment step or for the specified increment step:

• Tensor of plasticity strain (element / integration point / node);

• Equivalent plasticity strain (element / integration point / node);

• Yield stress (element / integration point / node);

• Yield domain (element / integration point).

20

4. Input and Output Data

4.1. Flow of Input/Output Data Processing

Fig. 7. Flowchart of input/output data processing

The input and output data processing done by the ADVENTURE_Solid module is

shown in Fig. 7. Except the output log that can be displayed on the view screen, all data

files have the ADVENTURE File format (binary). One data file contains the

information about one “Part” of the decomposed analysis model. The files containing

the decomposed analysis model, prepared in advance by the ADVENTURE_Metis

domain decomposer module, are used as input for the ADVENTURE_Solid module.

The ADVENTURE_Solid output files “Analysis Results” contain the information on

physical quantities of node displacement and stress. The output of physical quantities

can be set by options of the ADVENTURE_Solid module. In the case of nonlinear

analysis, the output can be done for each increment step. The output information is

ADVENTURE_Solid
Parallel Solver

Incrementation Step
Restart File

Analysis Model
(Decomposed Type)

Final Results of
Analysis

CG Restart File

Results of Analysis for
Each Increment Step

Output Log

Necessary
Optional

21

stored in the binary ADVENTURE File format form for each of the decomposed “Part”.

The restart function is provided for the cases of limited continuation of execution by

saving the data into files and restarting the program from the moment of interruption of

the calculations. Two types of restart files can be used: CG Restart File and Increment

Step Restart File. CG Restart File should be used to restart the linear elastic analysis,

and Increment Step Restart File should be used to restart the nonlinear analysis.

4.2. About the Unit System

Conversion functions of data unit systems are not implemented in the current

version of the program; the unit system of the input data should be consistent.

4.3. Processes of Input and Output

The input and output processes can be accomplished in the static work distribution

version for all of the processes, or in the dynamic work distribution version for the

parent processes. The input and output are consisted of a number of files where each

“Part” is treated as one file, and, depending on the process that takes control of the

“Part”, the input and output are carried out independently for each “Part”. In order to be

used by all processes, the path name excluding the “Part” number in the filename should

be the same. In the case of using the parallel computer environment presented by

workstation clusters connected by network, to share the files by NFS from each network

node the same paths should be set up (for convenience). If it cannot be done, the input

files should be copied in advance by ftp to each network node where the directory,

which can be referred by a common path name, should be prepared.

By default, file input and file output are carried out in the exclusive directory. The

input and output processes are not accomplished simultaneously; the access to the hard

disk is made one by one in order of a “Part” number. It is designed to eliminate the

decreasing of performance by concentrated access to the disk if file sharing is carried

out by NFS. However, to make the treated file independent, it is possible to use the local

hard disk of each node and parallel access can be done without problems. The parallel

file access using local disk can be done by setting up the option “-file-para” when

starting ADVENTURE_Solid module (See Chapter 5.2.7). To use the local hard disk,

the analysis model files should be located in the directory with the same path prepared

22

in advance.

4.4. Input Data

As it was mentioned in Chapter 4.1, the domain-decomposed FEM analysis model

should be prepared prior to execution of the ADVENTURE_Solid module. These

processes are done in the following sequence:

1. Creation of mesh file;

2. Creation of analysis model file with setting the boundary conditions and the

material properties;

3. Domain decomposition and creation of the domain-decomposed type analysis

model file.

Each procedure will be explained below.

4.4.1. Mesh File

At first, the mesh file of the analyzed object is created in the ASCII format. The

linear tetrahedron, quadratic tetrahedron, linear hexahedron, and quadratic hexahedron

can be used. However, the mixture of different elements is improper, and the mesh

should be altogether created using the same type of elements.

The tetrahedral mesh can be created by using the ADVENTURE_TetMesh module.

Refer to the user manual of ADVENTURE_TetMesh for detailed information.

Moreover, if the mesh system is prepared by other mesh creation tool, the tetrahedron

and hexahedron can be input into the ADVENTURE System. The following example

represents the file of linear hexahedral element. In the cube with the edge length of 2,

27 nodes and 2 x 2 x 2 = 8 elements are created.

23

The 1st line represents the total number of elements. From the 2nd to the 9th lines, the

element connectivity is shown line by line. The connectivity is expressed by a row of

the node numbers, which constitutes the element. In the case of linear hexahedron, eight

node numbers are queuing in a line, which sequences are decided for every element.

Refer to Appendix A for details. The 11th line represents the total number of nodes. The

lines from 12th to 38th represent the x, y, and z coordinates of each node. Each line is

corresponded to the data of one node in order of node number that starts from 0 and

counts until the “total node number –1”.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

8
0 1 4 3 9 10 13 12
1 2 5 4 10 11 14 13
3 4 7 6 12 13 16 15
4 5 8 7 13 14 17 16
9 10 13 12 18 19 22 21
10 11 14 13 19 20 23 22
12 13 16 15 21 22 25 24
13 14 17 16 22 23 26 25

27
-1.00000000e+00 -1.00000000e+00 -1.00000000e+00
0.00000000e+00 -1.00000000e+00 -1.00000000e+00
1.00000000e+00 -1.00000000e+00 -1.00000000e+00
-1.00000000e+00 0.00000000e+00 -1.00000000e+00
0.00000000e+00 0.00000000e+00 -1.00000000e+00
1.00000000e+00 0.00000000e+00 -1.00000000e+00
-1.00000000e+00 1.00000000e+00 -1.00000000e+00
0.00000000e+00 1.00000000e+00 -1.00000000e+00
1.00000000e+00 1.00000000e+00 -1.00000000e+00
-1.00000000e+00 -1.00000000e+00 0.00000000e+00
0.00000000e+00 -1.00000000e+00 0.00000000e+00
1.00000000e+00 -1.00000000e+00 0.00000000e+00
-1.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00
1.00000000e+00 0.00000000e+00 0.00000000e+00
-1.00000000e+00 1.00000000e+00 0.00000000e+00
0.00000000e+00 1.00000000e+00 0.00000000e+00
1.00000000e+00 1.00000000e+00 0.00000000e+00
-1.00000000e+00 -1.00000000e+00 1.00000000e+00
0.00000000e+00 -1.00000000e+00 1.00000000e+00
1.00000000e+00 -1.00000000e+00 1.00000000e+00
-1.00000000e+00 0.00000000e+00 1.00000000e+00
0.00000000e+00 0.00000000e+00 1.00000000e+00
1.00000000e+00 0.00000000e+00 1.00000000e+00
-1.00000000e+00 1.00000000e+00 1.00000000e+00
0.00000000e+00 1.00000000e+00 1.00000000e+00
1.00000000e+00 1.00000000e+00 1.00000000e+00

24

4.4.2. FEM Analysis Model (Entire Type)

After creation of the mesh file, the boundary conditions and the material properties

can be added to mesh using the ADVENTURE_BCtool module.

The following boundary conditions can be applied for all of the analyses:

• Displacement boundary conditions

The forced displacement boundary conditions can be applied. It is necessary to set

up 6 degrees of freedom (even for the load boundary conditions) to eliminate the

rigid body mode.

• Load boundary conditions

The load boundary conditions can be added to the object. Depending on the face

load conditions, the load will be transformed to the node equivalent force.

The following material properties are required for all of the analyses:

• Young’s Modulus (Real number of scalar);

• Poisson’s Ratio (Real number of scalar).

In addition to the values mentioned above, the following material properties are

required for elasto-plastic analysis:

• Initial yield stress (Real number of scalar);

• Work hardening coefficient (Real number of scalar).

Moreover, the following parameters should be set up if the gravity data are added:

• Mass density (Real number of scalar);

• Gravity acceleration (Real number of 3-dimensional vector).

The analysis model file is created in the ADVENTURE File format (binary)

accepted to present the data used for FEM analysis model in the ADVENTURE Project.

The data are handled by units called “ADV Document”. One file may contain several

ADV Documents with information on the node coordinates, element connectivity, etc.

25

Refer to [8] and the USER Manual for detailed information. An example of the data

contents supplied with the current package is located in the subdirectory

sample_data/. The USER can use the ADVENTURE_IO module to convert binary

data into the text format.

To read and write the data in the ADVENTURE File format, the ADVENTURE_IO

module is used as a library in the ADVENTURE Project, as well as by the

ADVENTURE_Solid module. To convert the binary data into a text format (ASCII),

advshow is supplied with current package. Detailed information can be found in

Appendix B.2.

4.4.3. Domain Decomposition of FEM Analysis Model

As it was mentioned previously, the FEM analysis model for ADVENTURE_Solid

is prepared using the hierarchical domain decomposition module ADVENTURE_Metis.

The ADVENTURE_Metis module is designed for execution in parallel computer

environments using MPI. Refer to the ADVENTURE_Metis USER Manual for the

details. The created file of decomposed analysis model has also the ADVENTURE File

format, but it serves as the format to which some was extended. The example of the data

contents supplied in with the current package is located in the subdirectory

sample_data/.

4.5. Analysis Results File

4.5.1. Output Physical Quantities

The analysis model and its appearance are recorded in the ADVENTURE File

format for each “Part”. The USER can select physical quantities that will be printed out.

In the nonlinear analysis, the data output for each of the increment step is also possible.

The physical quantities that can be printed out are summarized in Table 1.

26

Table 1. Possible output physical quantities
Physical quantity Output point Label name

Displacement Node Displacement
Reaction force Node ReactionForce
Stress tensor Element Stress
Stress tensor Integral point Stress@IntegrationPoint
Stress tensor Node NodalStress
Equivalent stress Element EquivalentStress
Equivalent stress Integration point EquivalentStress@IntegrationPoint
Equivalent stress Node NodalEquivalentStress
Strain tensor Element Strain
Strain tensor Integration point Strain@IntegrationPoint
Strain tensor Node NodalStrain
Only in the case of elasto-plastic analysis, the following output is possible
Plastic strain tensor Element PlasticStrain
Plastic strain tensor Integral point PlasticStrain@IntegrationPoint
Plastic strain tensor Node NodalPlasticStrain
Equivalent plastic strain Element EquivalentPlasticStrain
Equivalent plastic strain Integral point EquivalentPlasticStrain@IntegrationPoint
Equivalent plastic strain Node NodalEquivalentPlasticStrain
Yield stress Element YieldStress
Yield stress Integral point YieldStress@IntegrationPoint
Yield stress Node NodalYieldStress
Yield region Element PlasticState
Yield region Integral point PlasticState@IntegrationPoint

For the yield region, if the stress is on the yield surface, the value is 1, if not, the

value is 0.

Since the displacement and reaction force quantities are obtained on a node, they are

recorded for the node. The other quantities are internally evaluated by finding an

integral point, and the average values for the element are evaluated by arithmetic

averaging taken onto account the integral points. Compared to version β-0.8, in the

current version, to convert the data into the nodal data values, an extrapolation from the

integral point’s data to the nodal data of the element is done independently for each

element with consequent arithmetical averaging taken into account the values for all

connected elements. The element equivalent stress is obtained in the same way.

 In the case of conversion of the integral point’s data to the element’s data in the

plasticity region, if all integral points are belonged to the yield surface, the value is 1; if

any integral point is found be non-belonged to the yield surface, the value is 0.

The labels listed in Table 1 specify the physical quantities for output. As it was

already mentioned, the analysis results have the ADVENTURE File format, where

FEGenericAttribute (FEGA) is used as a Document to describe the element’s data.

HDDM_FEGenericAttribute (HDDM_FEGA) Document is used for the output of the

27

hierarchical domain decomposition. Necessary output physical quantities stored in the

HDDM_FEGA Document can be accessed by selecting the labels listed in Table 1. To

merge the necessary data, special program hddmmrg is supplied in the current package;

the data can be found by setting the label name in the program’s option.

The nodal displacement and nodal equivalent stress are set for the default output. To

obtain another quantities, the necessary options should be set. In the case of nonlinear

analysis, the output can be done for each increment step and the output interval can be

also specified. The output for each step is not specified by the default settings, and, if

necessary, the options should be added before the program execution.

Different filenames are used for the step-by-step output result file and the final

result file. The output data should be specified separately.

4.5.2. Post Processing of Analysis Results

The obtained results can be visualized by using the ADVENTURE_Visual module.

To perform the procedures that are not supported in ADVENTURE_Visual, the program

called hddmmrg is supplied with the current package. By using hddmmrg, the domain-

decomposed-type file with analysis results of the ADVENTURE File format can be

merged and converted into entire-type ASCII format with adding the numbers to the

nodes and elements. The labels listed in Table 1 should be used to obtain the necessary

physical quantities. Refer to Appendix B.1 for the detailed information on hddmmrg

usage.

28

5. Execution Method

As it was mentioned in Chapter 2, there are three versions of the

ADVENTURE_Solid module (the names of executable modules are listed):

• advsolid-s single version;

• advsolid-p version for static work distribution in parallel computing

environments;

• advsolid-h version for dynamic work distribution in parallel computing

environments.

Depending on the computer environments, one of the listed modules should be used.

The single version of the program does not require MPI for compilation and execution.

The other two parallel versions require MPI for compilation and execution. The

compilation and execution procedures may vary in accordance with the MPI

environment. The execution procedures will be described for the most commonly used

mpich [6]. If another MPI package is used, the mismatching part should be adjusted to

execute the programs.

The single version of the program can be executed by:

% advsolid-s [options] data_dir

In the case of mpich [6], the parallel version of the program can be executed using

mpirun command:

% mpirun [options_for_mpirun] advsolid-p [options] data_dir

or

% mpirun [options_for_mpirun] advsolid-h [options] data_dir

Here, [options_for_mpirun] are the command options for mpirun (see Appendix C). If

it is considered to use the environment other than mpich, the part mpirun

[options_for_mpirun] should be substituted by commands for the environment used.

[options] are the options used by ADVENTURE_Solid. They are basically the same for

all three versions of the program and are used for selection of analyses types and other

output parameters (will be described afterwards). The last parameter data_dir is the path

to the top directory where the input/output data files are located.

29

5.1. Filenames for Input and Output

The top directory data_dir where the input-output data files are located, should be

specified when the ADVENTURE_Solid module is executed. The following input-

output filenames are set up by default:

• Analysis model file:

data_dir/model/advhddm_in_P.adv

• File containing final analysis results:

data_dir/result/advhddm_out_P.adv

• File containing the analysis results by increment step:

data_dir/result/advhddm_incrout_S_P.adv

• CG restart file:

data_dir/cg-res/advhddm_cgres_P.adv

• Increment step restart file:

data_dir/incr-res/advhddm_incrres_S_P.adv

Here P is the “Part” number and S is the increment step number.

5.2. Program Options

The following options can be used for program execution.

5.2.1. Specification of Type of Analysis

The following options are used to specify the type of analysis. If no options are

added for the program execution, the linear elastic analysis will be performed.

• -ep

The option is used to perform the elasto-plastic analysis. It is necessary to specify

30

the work hardening coefficient and the initial yield stress at the time of model

creation.

• -tl

The option is used to perform the geometric nonlinear analysis by the Total

Lagrange method. It is effective for the elastic and elasto-plastic analyses with large

displacement and small strain problems. It cannot be specified together with the –

ul option.

• -ul

The option is used to perform the geometric nonlinear analysis by the Updated

Lagrange method. It is effective for the elastic and elasto-plastic analyses with large

displacement and large strain problems. It cannot be specified together with the –tl

option.

The following combination of options can be applied.

Table 2. Type of analyses and setup options
Type of analysis Program options

Linear elastic analysis
Large-displacement small-strain elastic analysis -tl
Large-displacement large-strain elastic analysis -ul
Elasto-plastic analysis -ep
Elasto-plastic large-displacement small-strain analysis -ep -tl
Elasto-plastic large-displacement large-strain analysis -ep -ul

Since the nonlinear analyses use the increment method, it is necessary to specify the

increment step except for the linear elastic analysis.

Moreover, it is possible to add the self-load using the following options. In this case,

it is necessary to specify the gravity and material density at the time of model creation.

The load increment can be controlled in nonlinear analyses by the sub-option -- bf-

with of the option –incr-step at each of the increment step.

• -gravity

The option is used to take into account the gravity forces.

5.2.2. Options Related to Elements

31

• -selective-intg

The option is used to perform the reduction of degree of integration for the

volumetric strain in the element integration. It is effective only for linear hexahedral

element.

• -tet10-integ5

Five-point integration is performed in element integration if the quadratic

tetrahedral element is used. Four-point integration is used if no option is specified.

5.2.3. Options for Data Input and Output

The output data on nodal displacement and nodal equivalent stress are recorded by

default, but the output for each increment step is not carried out. It is possible to control

the necessary output information by the following options:

• -result [sub-options]

The option is used to specify the data, which will be recorded into the final analysis

results file.

• -no-result [sub-options]

The option is used to specify the data, which will not be recorded into the final

analysis results file.

• -incr-result [sub-options]

The option is used to specify the analysis results data output by increment step.

• -no-incr-result [sub-options]

The option is used to specify the analysis results data, which will not be recorded by

increment step.

The concrete data for output should be specified by the sub-options, which should

follow the main option. Two or more sub-options can be specified at once. The

following sub-options can be used:

• --disp

32

Node displacement

• --reac

Node reaction force

• --estr

Element equivalent stress

• --estr-n

Node equivalent stress

• --estr-i

Integral point equivalent stress

• --str

Element stress tensor

• --str-n

Node stress tensor

• --str-i

Integral point stress tensor

• --stra

Element strain tensor

• --stra-n

Node strain tensor

• --stra-i

Integral point strain tensor

• --plstra

Element plasticity strain tensor (effective only for elasto-plastic analysis)

• --plstra-n

33

Node plasticity strain tensor (effective only for elasto-plastic analysis)

• --plstra-i

Integral point plasticity strain tensor (effective only for elasto-plastic analysis)

• --eqplstra

Element equivalent plasticity strain (effective only for elasto-plastic analysis)

• --eqplstra-n

Node equivalent plasticity strain (effective only for elasto-plastic analysis)

• --eqplstra-i

Integral point equivalent plasticity strain (effective only for elasto-plastic analysis)

• --ystr

Element yield stress (effective only for elasto-plastic analysis)

• --ystr-n

Node yield stress (effective only for elasto-plastic analysis)

• --ystr-i

Integral point yield stress (effective only for elasto-plastic analysis)

• --eipl

Element yield region (effective only for elasto-plastic analysis)

• --eipl-i

Integral point yield region (effective only for elasto-plastic analysis)

For example, in the case when the options “-result --disp --str –estr-

n --stra-n” are specified, the node displacement, the element stress tensor, the node

equivalent stress, and the node strain tensor will be recorded into the final analysis

results file.

34

5.2.4. Increment Step Control Options

For the nonlinear analyses, it is necessary to specify an appropriate increment step

by the following options:

• -incr-step n [sub_options]

The analysis will be performed for n increment steps. By default, for the

displacement and load boundary conditions, and for the deadweight (which should

be set up by option) the increment of one step will be 1/n. It is possible to set this

option repeatedly and the increment of the steps will be minced one by one as

specified.

This option has the following sub-options that should be placed after -incr-step n.

• --bc-width x

For the enforced displacement and load boundary conditions, set up in the analysis

model file, the factor x can be applied to the displacement and the load which will be

added at one increment step. If no x value is specified, 1/n (n is the number of steps)

value will be accepted.

• --bf-width x

For the volumetric force (dead mass), the factor x can be applied to add it with one

increment step. If no x value is specified, 1/n (n is the number of steps) value will be

accepted.

• --output-interval x

In the increment step specified by the option -incr-step, the output of the

analysis results will be done for the specified number of steps. By default, no output

will be done.

• --output-last

The output of the analysis results will be done for the last step specified by the

option -incr-step. By default, no output will be done.

• --resout-interval n

In the increment step specified by the option -incr-step, the output of the restart

35

file will be done for the specified number of steps. By default, no output will be

done.

• --resout-last

The output of the restart file will be done for the last increment step specified by the

option -incr-step. By default, no output will be done.

Fig. 8. Example of the increment step setup

The example of setting the options is presented in Fig. 8. If in the elasto-plastic

analysis, the displacement and load are added 5 times by a factor of 0.1 from the

beginning, and, later, 10 times by a factor of 0.05, the following options should be used:

“-ep -incr-step 5 --bc-width 0.1 -incr-step 10 --bc-width 0.05”.

In this case, the vertical axis is corresponded to the factor of load or displacement that

will be applied at the increment steps.

It is possible to set up the moments when the results will be recorded into the file.

For example, if the displacement and the element stress are recorded once after 5th

increment step from the beginning, and for 10 consequent steps by 2-step interval (5

times), the following options should be used:

“ -ep -incr-step 5 --bc-width 0.1 --output-last -incr-step 10

--bc-width 0.05 --output-interval 2 -incr-result --disp --str“.

0

0.2

0.4

0.6

0.8

1

0 5 10 15

F
a

ct
o

r
o

f
B

o
u

n
d

a
ry

 C
o

n
d

iti
o

n
s

Incrementation Step

F
ac

to
r

of
 B

ou
nd

ar
y

C
on

di
tio

ns

1

0.8

0.6

0.4

0.2

0 5 10 15

Increment Step

36

The following options should be used to restart the analysis using the Increment

Step Restart file:

• -use-incr-resin n

The analysis can be restarted from the n increment step if the output data was

recorded into the Increment Step Restart file in advance.

5.2.5. Control Options for Iteration Methods

In order to solve linear equations by global stiffness matrix, the iteration

calculations are performed by CG method; and Newton-Raphson method is used for

each increment step.

The following options are used in ADVENTURE_Solid to control CG iterations:

• -cg-tol x

The tolerance x to judge about the convergence is specified. The CG residual error

obtained at the first step is set for the base value, and the residual errors of CG

method, increment step, and Newton-Raphson iterations are compared with the base

value. The calculations are supposed to be converged if the relative residual error is

smaller than the tolerant value. In the case of nonlinear analysis, it is necessary to set

the tolerance of the Newton-Raphson method smaller. The default tolerance is

1.0 x 10-6.

• -cgloop-max n

The number of CG iteration steps can be set by n. The default value is 10000. There

are cases when the default number of iterations is not enough to reach the

convergence. Thus, for large-scale analysis, larger number of iterations is

recommended.

• -nokeep-kmat

By default, the stiffness matrix prepared at the first step of CG iteration is

memorized and later used for calculations. Setting this option, the matrix can be

prepared at each CG iteration step without consequent memorization. Using this

option will permit to decrease the necessary memory size, however the computing

time will be increased.

37

• -use-cg-resin

The calculations can be restarted from the step recorded in the CG Restart Input file.

This function can be used only in the linear elastic analysis. This function is not

effective by default.

• -resout-cgstep n

The output to the CG Restart file is done for every n CG step. No output is done if 0

value in set. By default, no output is performed.

• -resout-cglast

The last CG step is recorded into the CG Restart file. The output is done if the

convergence is reached or not reached within determined number of iteration steps.

By default, no output is performed.

The following options can be used to control the iterations by the Newton-Raphson

method:

• -newton-tol x

The tolerance x to judge about the convergence is specified. The CG residual error

obtained at the first step is set for the base value, and the residual errors of CG

method, increment step, and Newton-Raphson iterations are compared with the base

value. The calculations are supposed to be converged if the relative residual error of

Newton-Raphson iteration is smaller than the tolerant value. It is necessary to set the

tolerance of the Newton-Raphson method larger than that for the CG method. The

default tolerance is 1.5 x 10-6.

• -newton-max n

The maximum number of iterations can be set. The default value is 10. If the

convergence is not obtained within the specified number of steps, larger limit should

be specified to overcome the problem. Thought, more detailed breakdown of the

increment step is better than increase of the number of iterations.

38

5.2.6. Options for Changing of Input and Output Filenames

As it was mentioned in Chapter 5.1 for the basic method of setting the environment

for the input and output data files, it is specified by default that they should be located

in the top directory. If it is necessary to change the location of the input and output data

files, the following options should be used. Here, P corresponds to the number of “Part”

and S corresponds to the number of increment step.

• -model-file file

The input analysis model filename is assigned by file. The default filename is

advhddm_in. The extension _P.adv will be added to the filename automatically.

• -model-dir dir

The name of the subdirectory containing the input analysis model files is assigned

by dir. The default subdirectory name is model.

• -result-file file

The final output analysis results filename is assigned by file. The default filename is

advhddm_out. The extension _P.adv will be added to the filename

automatically.

• -result-dir dir

The name of the subdirectory containing the output analysis results files is assigned

by dir. The default subdirectory name is result.

• -incr-result-file file

The filename of the output analysis results for increment step is assigned by file. The

default filename is advhddm_incrout. The extension S_P.adv will be added to

the filename automatically.

• -incr-result-dir dir

The name of the subdirectory containing the output analysis results files for

increment step is assigned by dir. The default subdirectory name is result.

• -incr-resin-file file

The filename of the input increment step restart file is assigned by file. The default

39

filename is advhddm_incrres. The extension S_P.adv will be added to the

filename automatically.

• -incr-resin-dir dir

The name of the subdirectory containing the increment step restart files is assigned

by dir. The default subdirectory name is incr-res.

• -incr-resout-file file

The filename of the output increment step restart file is assigned by file. The default

filename is advhddm_incrres. The extension S_P.adv will be added to the

filename automatically.

• -incr-resout-dir dir

The name of the subdirectory containing the output increment step restart files is

assigned by dir. The default subdirectory name is incr-res.

• -cg-resin-file file

The filename of the input CG restart file is assigned by file. The default filename is

advhddm_cgres. The extension _P.adv will be added to the filename

automatically.

• -cg-resin-dir dir

The name of the subdirectory containing the input CG restart files is assigned by dir.

The default subdirectory name is cg-res.

• -cg-resout-file file

The filename of the output CG restart file is assigned by file. The default filename is

advhddm_cgres. The extension _P.adv will be added to the filename

automatically.

• -cg-resout-dir dir

The name of the subdirectory containing the output CG restart files is assigned by

dir. The default subdirectory name is cg-res.

40

5.2.7. Other Options

In addition, there are other options:

• -file-para

The option is used to set all processes to be done in parallel (see Chapter 4.3).

• -memlimit n

The option is used to set up the memory limit n (in Mbytes). The program will be

terminated if the limit will be overcome. Although, the actual memory necessary for

the large-scale analysis in unknown, it is possible to set up the memory limit for one

process to prevent disk swapping. In fact, the amount of memory is secured

dynamically and the actual memory used by processes will be not equal.

• -help or -h

The main help messages can be displayed.

• -help-output

The help messages for output data addresses can be displayed.

• -help-incr

The help messages for the increment step specification can be displayed.

• -help-iter

The help messages for CG method control options and Newton-Raphson method

control options can be displayed.

5.3. Script advsolid for ADVENTURE_Solid Execution

In addition to three executable modules: advsolid-s, advsolid-p, and

advsolid-h, the script file advsolid is supplied for convenience.

• The options can be specified in the setup file.

• It is unnecessary to specify the full path to the executable module in the command

41

line to execute the parallel versions advsolid-p and advsolid-h using

mpirun of mpich.

• All programs: the single version, the static load distribution version, and the parallel

load distribution version can be started using the supplied script file advsolid.

The actual way of program execution is:

% advsolid [-show] [-log logfile] [-single|-para|-parahddm]

[options_for_mpirun] [-conf conffile| --] [solver_options]

[data_dir]

The meanings of each option are:

• -show

The option is used to show what will be executed without actual execution.

• -log logfile

The output information that will be displayed on the monitor will be recorded also

into the output file with filename defined by logfile.

• -single | -para |-parahddm

The options are used to execute the single version, the static load distribution

version, and the dynamic load distribution version of the program, correspondingly.

• options_for_mpirun

The options used by mpirun should be specified.

• -conf conffile|--

The settings are read from the file defined by conffile. The options for

ADVENTURE_Solid should be specified after “--“ if no setup file is used.

• solver_options

The options for ADVENTURE_Solid discussed in Chapter 5.2 can be set here.

42

• data_dir

The top directory where the analysis model data are located should be specified here

(described in Chapter 5.2) if no setup file is used.

All of the previously listed options except –conf conffile can be set in the setup file

conffile. The setup file is read by advsolid as a Bourne shell script, where the options

are defined as variables:

• MODE

The option single should be used to execute the single version of the program. To

execute the static load distribution version of the program, the option para should

be used. To execute the dynamic load distribution version of the program, the option

parahddm should be used. If any other characters will be typed in this line, the

priority will be given to the option, typed in the command line. If no option is

specified, the single version of the program will be executed.

• MPIRUN

In the case of using parallel computer environments, the MPI execution command

can be specified. For mpich the default is mpirun. For that MPI which has no

such execution command a blank space should be left after “MPIRUN=”. No option

in the command line for this case is required.

• MPIOPTS

The MPI execution options for parallel computer environments can be specified.

The default is blank. No settings are necessary for that MPI which has no such

execution command. If the variables are simultaneously set by MPIOPTS and by

options_for_mpirun in the command line, it will result in the following setting:

“$MPIOPTS options_for_mpirun“ (both options written in the command line and

in the setup file will be sequentially applied).

• LOGFILE

The log data appeared during program execution on the monitor can be saved to the

file, which name can be defined here. No settings are necessary if no log is going to

be saved. If the filename of the output log is defined in the command line by the

option –log logfile, the priority will be given to the filename defined in the

command line. By default, the log file will not be created.

43

• PROGOPTS

The options used by the ADVENTURE_Solid module discussed in Chapter 5.2 can

be defined here. If the variables are simultaneously set by PROGOPTS and by

solver_options in the command line, it will result in the following setting:

“$PROGOPTS options_for_mpirun“ (both options written in the command line and

in the setup file will be sequentially applied). By default, no options are specified.

• DATADIR

The name of the top directory containing analysis data discussed in Chapter 5.2 can

be specified here. If the variables are set by DATADIR and by data_dir in the

command line simultaneously, the priority will be given to the options specified in

the command line. This option must be specified in either way.

An example of the setup file is given below. In this case, the elastic analysis is

performed by the static load distribution version in two network nodes. The node

displacement and equivalent stress are recorded by default. The outputs of the element

stress tensor and the element strain tensor are specified by PROGOPTS. The data will be

stored in the directory cube_p2d2.

set parallel mode

MODE=para

program name of mpirun

MPIRUN=/usr/bin/mpirun

options for mpirun

MPIOPTS="-np 2"

set if you want save log to file
LOGFILE="run.log"

Options for AdvSolid

PROGOPTS="-result --str --stra"

Data directory to be analyzed

DATADIR=cube_p2d2

44

the program execution command will be as follows if the setup file is named

advsolid.conf:

% advsolid -conf advsolid.conf

If it is necessary to change only the directory name from cube_p2d2 to

another_model without changing the setup file, the execution command can be:

% advsolid -conf advsolid.conf another_model

6. Program Compilation and Installation

6.1. Program Compilation

The C compiler, the MPI environment, and the ADVENTURE_IO module are

necessary to compile the ADVENTURE_Solid module. In the environments without

MPI, MPI should be installed prior to the ADVENTURE_Solid module compilation

(MPICH [6] can be used). If only single version of the ADVENTURE_Solid module is

supposed to be used, the MPI environment is not required. The ADVENTURE_IO

module should be installed and compiled before the compilation of the

ADVENTURE_Solid module. Since the tool programs for reprocessing of log files are

written by PERL, it is preferable that PERL being installed, thought it not essential for

the compilation of the ADVENTURE_Solid module.

The following procedure is accepted for the compilation of the

ADVENTURE_Solid module:

1. ./configure [options]

2. make

Both of commands should be executed from the top directory of ADVENTURE_Solid.

By executing the shell script configure, the necessary computing environment will

be created and recorded into the file Makefile.

The following options can be used with configure command. The absolute path

45

to the directories should be specified.

• --with-adv=directory

The option is used to define the top directory of ADVENTURE_IO

• --with-mpicc=command

The option is used to define the name of C compiler for MPI. The default is mpicc.

Parallel versions of the ADVENTURE_Solid module will not be compiled if the C

compiler for MPI is not found.

• --with-mpi-cflags=CFLAGS

The options for C compiler are specified by CFLAGS if the program is compiled for

MPI environment. For example, the following statement can be used if it is

necessary to specify the include files for MPI.

--with-mpi-cflags="-I/usr/local/include/mpi"

The options specified here by CFLAGS for MPI compiler can be used together with

the options for the single version of the program (options for CC compiler).

• --with-mpi-libs=LIBS

The option is used to define the MPI links. For example, the following statement can

be used to define the MPI libraries.

--with-mpi-libs="-L/usr/local/lib/mpi -lmpi"

The necessary options specified here for MPI link, can be used together with the

necessary options for the single version of the program (options for CC compiler).

• --enable-optimize

The optimization for compilation is performed. If any other options are required for

optimization, the option described below should be used.

• --enable-optimize=CFLAGS

The optimization for compilation is performed using the options specified by

CFLAGS.

• --prefix=install_dir

The option is used to define the top directory for program installation by install_dir.

Only the executable modules will be installed in the directory install_dir/bin. The

46

default directory is /usr/local.

The following environmental variables can be applied to change the C compiler

used for the single program version and the common part of the single and parallel

program versions. These options should be set prior to execution of the shell

script ./configure.

• CC

The option is used to define the name of C compiler.

• CFLAGS

The option is used to define the flags for C compiler.

• LIBS

The option is used to specify the necessary libraries to be linked.

For example, the following statements can be used in the case of C shell:

% setenv CC /usr/local/bin/cc

% setenv CFLAGS "-O2 -g -Wall"

% ./configure

The following statements can be used in the case of Bourne shell:

$ CC=/usr/local/bin/cc

$ export CC

$ CFLAGS="-O2 -g -Wall"

$ export CFLAGS

$./configure

47

If the compilation using the supplied configure shell script is failed, the samples of

Makefile prepared in each subdirectory should be used for compilation.

Makefile.sample should be copied to Makefile and the necessary changes in

each Makefile should be done in accordance with the concrete computational

environment. The make command should be executed in each directory contained

Makefile. The files located in the directory libfem/ should be compiled before the

files located in the directory solver/.

6.2. Program Installation

Only executable files will be installed. If the compilation is done using the configure

script, the following command should be executed from the top directory:

% make install

The created executable modules will be installed in the directory defined by

install_directory. If configure is not used and the compilation is done by adjusting

Makefile, the following command should be executed from the directories contained

Makefile except the directory libfem:

% make install

The destination directory for installation can be defined by INSTALL_BINDIR in

Makefile. The default installation directory is bin located under the top directory.

48

Appendix

A. Allowable Types of Elements

ADVENTURE_Solid can use four types of elements shown in Table 3. The

existence of different types of elements is not supported and only one type of element

can be used in one analysis model.

Table 3. Allowable types of elements
Element type Number of nodes Number of integration points

Linear tetrahedron 4 1
Quadratic tetrahedron 10 4 (5)

Linear hexahedron 8 8
Quadratic hexahedron 20 27

49

A.1. Linear Tetrahedral Element

1. Node
The number of nodes is 4. The arrangement of the node numbers in the elements

connectivity is shown in Fig. 9.

Fig. 9. Linear tetrahedral element

2. Integration Points
The number of integration points is 1. The integration point uses the volumetric

coordinates (L0, L1, L2, L3) presented in Table 4. The point P shown in Fig. 9 has the

following coordinates.

L0 = Volume of tetrahedron P123 / Volume of tetrahedron 0123 (2)
L1 = Volume of tetrahedron P023 / Volume of tetrahedron 0123 (3)
L2 = Volume of tetrahedron P013 / Volume of tetrahedron 0123 (4)
L3 = Volume of tetrahedron P012 / Volume of tetrahedron 0123 (5)

Table 4. Integration points of linear tetrahedral element
Integration point number L0 L1 L2 L3

0 1/4 1/4 1/4 1/4

Primary Node

50

A.2. Quadratic Tetrahedral Element

1. Node
The number of nodes is 10. The arrangement of the node number in the elements

connectivity is shown in Fig. 10.

Fig. 10. Quadratic tetrahedral element

2. Integration Points
The default number of integration points is 4. The integration points use the

volumetric coordinates (L0, L1, L2, L3) presented by equations (2) ~ (5) and Fig. 9.

The integration points of quadratic tetrahedral element are shown in Table 5. The a

and b values in Table 5 are:

α = 0.58541019662496845446

β = 0.13819660112501051518

Table 5. Integration points of quadratic tetrahedral element (4 points)
Integration point number L0 L1 L2 L3

0 β α β β
1 β β α β
2 β β β α
3 α β β β

Primary
Node

Secondary
Node

51

The number of integration points can be set to 5 by using the option at the time of

program execution. The volumetric coordinates for this case are presented in Table 6.

Table 6. Integration points of quadratic tetrahedral element (5 points)
Integration point number L0 L1 L2 L3

0 1/4 1/4 1/4 1/4
1 1/6 1/2 1/6 1/6
2 1/6 1/6 1/2 1/6
3 1/6 1/6 1/6 1/2
4 1/2 1/6 1/6 1/6

52

A.3. Linear Hexahedral Element

1. Node
The number of nodes is 8. The arrangement of the node number in the elements

connectivity is shown in Fig. 11.

Fig. 11. Linear hexahedral element

2. Integration Points
The number of integration points is 8. The integration points use the normalized

coordinates (ξ ,η ,ζ) (-1 < ξ ,η ,ζ < 1) presented in Table 7.

Primary Node

53

Table 7. Integration points of linear hexahedral element
Integration point number ξ η ζ

0 3/1− 3/1− 3/1−
1 3/1 3/1− 3/1−
2 3/1− 3/1 3/1−
3 3/1 3/1 3/1−
4 3/1− 3/1− 3/1
5 3/1 3/1− 3/1
6 3/1− 3/1 3/1
7 3/1 3/1 3/1

54

A.4. Quadratic Hexahedral Element

1. Node
The number of nodes is 20. The arrangement of the node number in the elements

connectivity is shown in Fig. 12.

Fig. 12. Quadratic hexahedral element

2. Integration Points
The number of integration points is 27. The integration points use the normalized

coordinates (ξ ,η ,ζ) (-1 < ξ ,η ,ζ < 1) presented in Table 8.

Primary
Node

Secondary
Node

55

Table 8. Integration points of quadratic hexahedral element
Integration point number ξ η ζ

0 5/3− 5/3− 5/3−
1 0 5/3− 5/3−
2 5/3 5/3− 5/3−
3 5/3− 0 5/3−
4 0 0 5/3−
5 5/3 0 5/3−
6 5/3− 5/3 5/3−
7 0 5/3 5/3−
8 5/3 5/3 5/3−
9 5/3− 5/3− 0

10 0 5/3− 0

11 5/3 5/3− 0

12 5/3− 0 0

13 0 0 0
14 5/3 0 0

15 5/3− 5/3 0

16 0 5/3 0

17 5/3 5/3 0

18 5/3− 5/3− 5/3
19 0 5/3− 5/3
20 5/3 5/3− 5/3
21 5/3− 0 5/3
22 0 0 5/3
23 5/3 0 5/3
24 5/3− 5/3 5/3
25 0 5/3 5/3
26 5/3 5/3 5/3

56

B. Tools

In addition to the ADVENTURE_Solid module, the following tools are included in

the current package.

B.1. Converter of Analysis Results to Entire Type Data
(hddmmrg)

The program hddmmrg is designed to merge the domain-decomposed

ADVENTURE Fomat files containing the analysis results data to the text data file.

Since the output format is simple, the USER can process analysis results. Such data

reprocessing is not necessary for visualization of the analysis results obtained by the

ADVENTURE_Visual module.

The following command is used to execute hddmmrg:

% hddmmrg [options] label data_dir

Here, data_dir is the top directory where the analysis results of the domain-decomposed

model are located. It is the same parameter as used for advsolid execution. label is

the identification name of the file which will be created after reprocessing the data by

hddmmrg. label should be selected from the names listed in Table 1 depending on the

output done by ADVENTURE_Solid. Selective data can be recorded from the analysis

results file by setting the necessary name of label. hddmmrg treats only one type (one

label) of the output results data at one execution. If several results are going to be

merged, hddmmrg should be executed for each type of the data.

By default, the analysis model file is data_dir/model/advhddm_in_P.adv and

the analysis results file is data_dir/model/advhddm_out_P.adv, where P is the

“Part” number.

The following options can be used with hddmmrg:

• -modelfile file

The domain-decomposed type analysis model file created by ADVENTURE_Metis

is set to file (the filename should be specified up to _P.adv).

57

• -resultfile file

The filename of domain-decomposed analysis results file created by

ADVENTURE_Solid is specified (the filename should be specified up to _P.adv).

By default, it is result/advhddm_out.

• -itemlist file

The option is used to specify the file from which the specific node(s) or element(s)

data (set by a node number or an element number) will be read. By default, all

information will be recorded into the file. The format of file is ASCII. The fist line in

the file represents the number of nodes (elements) for output, and from the second

line, the node (element) numbers are listed.

• -h

The option is used to display help messages.

It is possible to create a list of data labels contained in the analysis results file by the

following command:

% hddmmrg [options] -showlabel data_dir

The data file can be set up using the option –resultfile file.

The format of the analysis results data merged by hddmmrg is presented below.

1 label=Displacement
2 num_items=125
3
4 0: 0.00000000e+00 0.00000000e+00 0.00000000e+00
5 1: -1.96064988e-06 -1.96064988e-06 -2.77081012e-06
6 2: -7.69281443e-07 -1.93681695e-06 -2.30353339e-06
7 3: -4.05759629e-21 -1.97623614e-06 -2.21997832e-06
8 4: 7.69281443e-07 -1.93681695e-06 -2.30353339e-06
9 5: 1.96064988e-06 -1.96064988e-06 -2.77081012e-06

10 6: -1.93681695e-06 -7.69281443e-07 -2.30353339e-06
11

Here, the label name is displayed in the 1st line; the number of selected nodes

(elements) is displayed in the 2nd line. The merged data are displayed from the 4th line

where one line contains the data (displacement in this case) for one node (element)

started with its number. One value will be displayed for the scalar type data, and three

58

values in order of x, y, and z will be displayed for the vector type data. Thus, for the

stress or strain tensors, six values are displayed in order of xx, yy, zz, xy, yz, zx.

For the data at the integral point, one line of the file contains the information on one

element. The label name is displayed in the 1st line; the number of selected integral

points is displayed in the 2nd line. The merged data are displayed from the 4th line where

one line contains the data (in order presented in Appendix A) for one integral point

started with element’s number. The stress components σι,xx, etc. of the element are

shown for each i integral point.

1 label=Stress@IntegrationPoint
2 num_items=64
3
4 0: σ0,xx σ0,yy ... σ0,zx ... σ1,xx σ1,yy ... σ1,zx

5 1: σ0,xx σ0,yy ... σ0,zx ... σ1,xx σ1,yy ... σ1,zx

6 2: σ0,xx σ0,yy ... σ0,zx ... σ1,xx σ1,yy ... σ1,zx

7 3: σ0,xx σ0,yy ... σ0,zx ... σ1,xx σ1,yy ... σ1,zx

8 . . .
9 . . .

10 . . .
11 . . .

59

B.2. ADVENTURE Format File Viewer (advshow)

The program advshow supplied in the current package can be used to convert the

files from the ADVENTURE File format (binary) to text format (ASCII). The following

command should be used:

% advshow [options] file1...

The file for conversion should be specified by file1. Two or more filenames can be

specified. A standard output is defined by default.

The following options can be used with advshow:

• -o file

The output will be done to the file specified by file instead of standard output file.

• -p

Only the Property part will be printed out (parts containing the data will not be

printed out).

• -h

The help messages will be displayed. The statement file1… is not necessary with this

option.

60

B.3. Analyzer (log2*) of Log File Created by advsolid

The script files log2cnv-cg, log2cnv-nr, and log2info for operating with

output logs created by the ADVENTURE_Solid module are supplied in the current

package. Since these programs are written by PERL, PERL should be installed in

advance.

• log2cnv-cg

The script is used to convert the log data into the format that can be easily used to

plot graphs. After conversion, each line of the file contains the data at the current

step for:

1). The number of CG iteration step;

2). The relative residual error for the current step;

3). The absolute residual for the current step;

4). The computing time (dimension: seconds).

• log2cnv-nr

The script is used to convert the log data into the format that can be easily used to

plot graphs for Newton-Raphson iterations. After conversion, each line of the file

contains the data at the current step for:

1). The number of CG iteration step;

2). The relative residual error for the current step;

3). The absolute residual for the current step;

4). The computing time (dimension: seconds);

5). The number of Newton-Raphson iteration step.

• log2info

The script is used to convert the log data into a brief summary. The data on memory

used for calculations and total computing time will be printed out.

Two methods of log file input are common for all 3 scripts: standard input from a

keyboard and input from a file. When input is done from a file, the filename should be

specified as an argument for each script. In order to save the reprocessed log to the file,

redirection functions or the option –log of the advsolid script should be used.

61

For example, to plot the CG residual by gnuplot using the log, which was saved

as run.log after execution of ADVENTURE_Solid, the following commands can be

used:

% log2cnv-cg run.log > cgconv.dat

% gnuplot

gnuplot> set logscale y

gnuplot> plot "cgconv.dat" using 1:2

Y-axis will be displayed in logarithmic scale. The graph for relative residual error versus

CG steps can be obtained. In the last line, the statement “1:2” is corresponded to the

relative residual error vs. CG step. It can be changed to “1:3” to plot the absolute

residual error vs. CG step, or to “4:2” to plot the relative residual error vs. computing

time.

62

C. Method of Using MPICH

The versions of ADVENTURE_Solid for parallel computing advsolid-p and

advsolid-h use parallel libraries MPI [5]. Thought, there are a variety of parallel

mounting systems in MPI, the method of using mpich [6], which was employed at the

time of module creation, will be discussed. mpich is a free software for network

connection of computers which supports a lot of platforms. It can be installed into the

environments, where no MPI is prepared. The parallel versions of program can be

executed if at least 2 PCs are connected by network.

Here, the execution method will be described on workstations connected in parallel

by network (it is called ch_p4 device in MPICH). Refer to the manual for mpich to

obtain detailed information.

C.1. Preparation

mpich uses the UNIX command rsh to execute the programs on a remote host.

The user should properly prepare a file .rhosts in the home directory to execute the

programs in parallel mode. If NFS is used and the home directory can be accessed by all

hosts, the file .rhosts can be prepared only in the shared directory.

The host names and the user names should be written in the .rhosts line-by-line.

For example if the user name is user and the hosts names are host0, host1, host2,

and host4, the content of the file will be look like:

It is possible to define the hosts and user for total system by the file

/etc/hosts.equiv. It will also permit to use .rhosts, but this file is not

necessary to be prepared.

host0 user

host1 user

host2 user

host3 user

host4 user

63

C.2. Execution

The following command should be used to execute the program program in parallel

mode using MPICH from the command prompt:

% mpirun [options_for_MPICH] program [options_for_program]

Among a number of options for MPICH (refer to the mpich manual for details), the

following options are frequently used:

• -np number_of_hosts

The option is used to specify the number of hosts to be involved.

• -machnefile machine_file

The option is used to change the default host, which performs parallel computing by

the host written in the file machine_file.

For example:

Since the parallel execution is assigned sequentially from the host which was able to

start (from the first host of this file), the actual number of hosts and the number of

hosts written in this file in not necessary to be equal.

host0

host1

host2

host3

host4

64

References

[1]. ADVENTURE Project Home Page: http://adventure.q.t.u-tokyo.ac.jp/

[2]. G. Yagawa and R. Shioya: Parallel Finite Elements on a Massively Parallel

Computer with Domain Decomposition, Computing Systems in Engineering, 4,

Nos. 4-6 (1993), 495-503.

[3]. G. Yagawa and R. Shioya: Massively Parallel Finite Element Analysis,

Asakura-Shoten, (1998) (in Japanese).

[4]. T. Miyamura, H. Noguchi, R. Shioya, S. Yoshimura and G. Yagawa:

Massively Parallel Elasto-Plastic Finite Element Analysis Using the

Hierarchical Domain Decomposition Method, Transactions of Japan Society

of Mechanical Engineers (JSME), 65-A, No. 634 (1999), 1201-1208 (in

Japanese).

[5]. MPI Home Page: http://www-unix.mcs.anl.gov/mpi/

[6]. MPICH Home Page: http://www-unix.mcs.anl.gov/mpi/mpich

[7]. T. Hisada and H. Noguchi: Nonlinear Finite Element Method: Fundamentals

and Applications, Maruzen, (1995) (in Japanese).

[8]. T. Miyamura, S. Tanaka, H. Takubo, S. Yoshimura and G. Yagawa:

Standardization of Input/Output Data in Large Scale Parallel Computational

Mechanics System, Internet Transactions of Japan Society for Computational

Engineering and Science (JSCES), No. 20000028 (2000) (in Japanese).

http://homer.shinshu-u.ac.jp/jsces/trans/trans2000/No20000028.pdf

