ADVENTURE MATERIAL MODULE MANUAL

Copyright (C) 2000
University of Tokyo, The Japan Society for the Promotion of Science (JSPS),
Shinobu Yoshimura, Tomonari Furukawa

All Rights Reserved

Shinobu Yoshimura
Department of Quantum Engineering and Systems Science
University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113 JAPAN
E-mail: yoshi@aq.t.u-tokyo.ac.jp

Tomonari Furukawa
School of Aerospace, Mechanical and Mechatronic Engineering, J04
University of Sydney, NSW 2006 AUSTRALIA

E-mail: tomo@acfr.usyd.edu.au



mailto:yoshi@q.t.u-tokyo.ac.jp
mailto:tomo@acfr.usyd.edu.au

COPYRIGHT NOTICE

ADVENTURE MATERIAL Module

Copyright (C) 2002, University of Tokyo, the Japan Society for the Promotion of Science (JSPS),
Shinobu Yoshimura, Tomonari Furukawa

All Rights Reserved

Work by the JSPS-RFTF ADVENTURE Project (JSPS-RFTF97P01104)
Joint work with University of Sydney

Headed by Shinobu Yoshimura in University of Tokyo, Japan

Work supported by the Japan Society for the Promotion of Science (JSPS).

Permission is hereby granted, free of charge, to any person obtaining a copy of this software,
associated documentation and/or image files ("Software"), to use, modify and/or merge the
Software. However, when redistributing any part of the Software in any manner, a request for
permission must be sent to adventure@garlic.q.t.u-tokyo.ac.jp.

The Software is provided "as is", without warranty of any kind. In no event shall the Author, the
ADVENTURE project, University of Tokyo, JSPS be liable for any claim, damages or other
liability, whether arising from or in connection with the Software.

The fact of utilization of the Software must be explicitly mentioned in the documentation to be
provided and within the comments of the user code for the use of any part of the Software
provided.



1 INTRODUCTION

This document describes ADVENTURE MATERIAL module of ADVENTURE Project
(http://adventure.q.t.u-tokyo.ac.jp/) for the development of a computational mechanics system
for large-scale analysis and design. The finite element analysis requires the user to define the
following two models a priori:

® Property model (substantially material model in case of solid analysis)

® Geometry model (substantially finite element model)

So as the geometry model, the accuracy of the property model is indispensable for accurate finite
element analysis.

While most of ADVENTURE modules are developed to increase the accuracy of the
geometry model (by means of large-scale analysis), the ADVENTURE MATERIAL module is
developed to increase the accuracy of property model. More precisely, the
ADVENTURE MATERIAL module is an automated system for parameter identification of
inelastic material models accurately.

Ideally, this module should create a model subroutine automatically, after the accurate
material parameters are identified automatically. However, there is no interface program
available so far, which links this module to other ADVENTURE modules, and this module is
used as a stand-alone system. This is simply due to the lack of pure research in automatic
material modelling for finite element analysis by the material modelling and finite element
community. However, having the most updated and sophisticated identification technique
implemented, this system has great potential to be used as an automatic material modeller for
finite element analysis in the near future.

Even at this moment, this system can be used effectively to promote the study of inelastic
material behaviour. In the system, one can create various material models using the
implemented editor easily and determine their parameters straightaway in an automatic manner.
One can also investigate the effect of each parameter very easily. Thanks to the user-friendly
graphical user interface, even people who do not have enough knowledge in materials mechanics
can easily use this system. Therefore, the system can be used, for instance, at a university for
students’ hands-on practice on learning the non-linearity of materials, at a research institute for
researchers’ testifying the appropriateness of the material model they developed, and at a
manufacturer for software engineers’ implementing the most accurate material model for their
finite element analysis.

Figures 1 shows the schematic diagram of the ADVENTURE MATERIAL system. In the
modeller, the user can create or edit a material model and saved it as a model file. If a model is
created, the visualiser allows the user to simulate it by specifying all the parameters concerning
the model, while in the identifier, the user can identify unknown parameters by specifying their
search ranges. The visualiser can be run from the identifier, so the material model with the
identified parameters can be simulated subsequently in the identifier as long as the identification
is finished.
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Figure 1 Schematic diagram of the developed system

This documentation is organised as follows. The subsequent sections present the
ADVENTURE MATERIAL system. The next section deals with software and hardware
required to run the system, and the installation of the system is described in the third section.
The fourth section then presents how to run the system. The user needs to understand the
meaning of all the inputs for the system. For this sake, Appendix A first introduces
fundamentals of material models. The parameter identification technique implemented in this
system is referred to in Appendix B. Finally, the generalisations of modelling, identification and
simulation are described for the automatic parameter identification of various material models in
Appendix C. Details of the research that was necessary to develop this system can be found in
[Furukawa, et al., in print].

2 REQUIRED SOFTWARE AND HARDWARE

The system is programmed in JAVA language, so the system is Operating System
independent. All you need is to install a JAVA compiler to your computer. The system has been
successfully installed with most of reasonable computer hardware (better than or equal to 400
MHz CPU speed and 32 MB memory) having a JAVA compiler from “Java Development Kit
(JDK)” or “Java Runtime Environment (JRE)”. JDK and JRE can be downloaded from: http://

java.sun.com/.

3 INSTALLING ADVENTURE_MATERIAL

If you are currently reading this documents, you must have downloaded the file
“AdvMaterial-0_8b.tar.gz” from http://adventure.q.t.u-tokyo.ac.jp/software/download.html and
defrost it with “gzip —d” and ‘tar’ commands. If you obtain this system from other sources, what
you should do on your directory having the file is:

> gzip —-d AdvMaterial-0 8b.tar.gz

> tar xvf AdvMaterial-0 8b.tar

> 1s

. AdvMaterial-0_1b

> cd AdvMaterial-0 1b

> 1s

. classes exp-data input-data load-conditions models src doc
copyright.txt


http:// java.sun.com/
http:// java.sun.com/
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You will find the directory ‘AdvMaterial-0 1b’ created. If you find the above directories
and file after you moved to the directory ‘AdvMaterial-0 1b’, your installation is meant to be
successful. All the classes are already in the directory ‘classes’, so you do not have to compile
the system. However, if you want to do so, you can find all the source files in the directory ‘src’.
Go on to the next section to run the system.

4 RUNNING ADVENTURE_MATERIAL

4.1 Starting ADVENTURE MATERIAL

When you are on the directory ‘AdvMaterial-0 1b’, go to the directory ‘classes’. There is a
file called ‘Main.class’, so to start the system, you type ‘java Main’.

> cd classes +
> java Main +

You will find the control window of the system shown in Figure 2 on your screen.
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Figure 2 Control window

Since it is well structured, the system consists of only three subsystems; the modeller, the
visualiser and the identifier explained in the last section, and each subsystem can be run simply
by clicking on a menu in the control window.

The following three subsections demonstrate how to use the modeller, the identifier and the
visualiser respectively with a sample problem, which is to identify the parameters of a modified
Krempl model, proposed by Nakamura [1998], from experimental data of 316FR stainless steel.
You can practice with this sample problem as all the data to revive this demonstration are saved
in the system. If you do not understand any of the mathematics behind it, you are referred to
Appendices A-C.

4.2 Modeller

The objective of the modeller is to define a material model. Any model describing the
internal evolution, which is described in a state space form as follows, can be implemented in the
system:

E=&(0.5a) M
where & is the set of material internal variables.

The material model used to demonstrate the system is a Krempl model modified by
Nakamura [1998]. This model can well describe both the cyclic and stress-relaxation behaviours



of 316FR stainless steel and is defined as
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Figure 3 shows the modeller window where this Krempl model has been defined. All that is
required here is to assign a letter or a word to each internal variable and material parameter and
to describe the model equations accordingly. The grammar used to describe the model equations
follows JAVA an C language (JAVA and C grammars to describe such equations are identical).
The Macauley bracket, which is very often used to describe a material model, is defined as
function ‘mac(input)’, so each equation can be mostly defined with a single line. Therefore, only
four lines are necessary to describe this model. When editing is complete, a compile checker can
be run with a command in the menu to check the grammar, and the model is saved in a model
file if the compilation has been successful.
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Figure 3 Model editor

4.3 Identifier

The identifier window, after all the necessary parameters are inputted, is shown in Figure 4.



The identification process in the system starts with the load of a model file, and this then allows
the user to input all the parameters necessary for identification. This order is due to the use of
information from the model file for determining input items. The parameters that can be
specified in the current system include all of those listed in Tables 1-4 except for weighting
factor w; , which will be implemented in the next version. See Appendices A-C if you do not
understand the meaning of any parameter. If you want to specify all shown in Figure 4, you go

to ‘File’ of the menu bar, select ‘Open’ and open ‘new_data.tii’. The file “*.tii” captures all the
specifications for a problem.
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Figure 4 Identifier window

Table 1 Parameters for simulation

Parameter type Mathematical
representation
Model | Model parameters See Table 2
Initial conditions &,
Parameters a
Experimental conditions See Table 3
No. of iterations Deim

Table 2 Model parameters

Parameters Mathematical
representation

No. of state variables n,

No. of material parameters n,

Stress equation o




Internal variable | Plastic model f-’
equations Viscoplastic model é
Table 3 Experimental conditions
Experiment type Parameters Mathematical
representation
Cyclic Strain rate (increment) £.(Ag,)
Maximum strain E o
Number of cycles q
Monotonic Strain rate (increment) £.(Ag,)
(Tensile / compression) [Torminal strain .
Stress relaxation Terminal time foo
Constant strain E
Table 4 Parameters for identification
Parameter type Mathematical
representation
Model | Model parameters See Table 2
Known initial conditions & *
Known material parameters | a*
Search space for unknowns [x i xmax]
No. of experiments m
Experiment | Experimental condition | See Table 3
l,....q Strain interval A,
Stress-strain data [&,*,0,%]
No. of iterations D
Optimisation W
CEA u, A

In addition to the material model file, the files that are prepared before identification are
experimental data files. As material testing machines often output files containing only stress-
strain data with respect to time as shown in Figure 5, a wizard shown in Figure 6, which
specifies experimental conditions listed in Table 3 for each experiment, is implemented in the
system. The creation of the experimental condition file through this wizard allows each set of
experimental data to be related to simulation data, thus enabling the identification. This wizard
automatically starts its operation after pressing the button ‘add’ if an experimental condition file

is not created for experimental data of interest.
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Time

0.01000
.01500
.02000

0
0
0.02500

Strain

.004000
.008000
.012000
.016000

0

0
0
0

Stress

20.000000
40.000000
58.661764
68.785561

Figure 5 Experimental data format
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Figure 6 Wizard for creating the experimental condition file

All other parameters are specified in this window. In the input of model-related parameters,
a search range should be inputted for the unknown parameters with a value being specified for
each known parameter. To facilitate this operation, a mode change button is implemented for
each internal variable and material parameter. Clicking this button changes from the value to the
search space and vice versa. After all the parameters have been inputted, the identification can
be executed simply by choosing ‘Start’ in the ‘Exec’ menu. Figure 7 shows a window, which
displays the transition of the objective function and the parameters to be identified. When the
identification is over, the parameters identified can be sent to the visualiser for simulation as

depicted in Figure 8.
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Figure 8 Call for visualiser

4.4 Visualiser

The visualiser window is shown in Figure 9 following inputting of all the parameters
necessary for simulation. The parameters include all of those in Tables 1-4, and can be inputted
when a model file is loaded, similarly to the identifier. In this window, the user has an option of
showing simulation results only or with experimental data for comparison. This simulation is
then executed by selecting ‘Start’ in the ‘Exec’ menu. The simulation can also be conducted by
pressing ‘Yes’ in Figure 8 as a result of identification. In this case, all the necessary parameters,
including the parameters identified, are directly fed from the identifier to the visualiser for
display in these windows.

Figures 10 and 11 show the simulation results with the parameters identified in the last
subsection. Figure 10 shows the result of the cyclic load test with strain rate 0.1%/s, whereas the
result of the cyclic load test with strain rate 0.1% and stress relaxation test for 600s is shown in
Figure 11. The material model creates curves well coincident with material data. This
identification does not take more than 20 seconds with a computer having Pentium 400MHz.
From these results, you can understand that the effectiveness of the system in identification.
Shown in the windows for each material behaviour are stress-strain data and stress-time data.
Both the simulation data and experimental data are displayed together with the parameters used
for simulation and the average errors between them.
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Figure 10 Simulation result of the cyclic load test with strain rate 0.1%/s
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Figure 11 Simulation result of the cyclic load test with strain rate 0.1% and stress relaxation
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APPENDIX A: STRAIN-CONTROLLED MATERIAL MODELLING

A.1 Strain-controlled models

A material model is most commonly formulated to describe the stress-strain relationship. In
models describing material behaviours where the strain is controlled, the strain is given as the
input and the stress as the output. Such a model, under stationary temperature and uniaxial
loading conditions is, in a general sense, given by the standard reduced form [Bard, 1974]:

(6)

o =06(¢;a)

where o, ¢ and a represent the stress, strain and material parameters respectively. Note here
that we will present only formulations for strain control, partly because the strain control test is
more popular than the stress control test and partly because the stress control formulation can be
given by exchanging the stress and strain.
In the simulation of the model, the strain control is translated such that the configuration of
the strain is provided. This first means that the initial condition of the strain is known:
£(0)=¢,. (7

If the model in use is plastic and the material behaviours of concern are independent of change of
strain rate, a strain increment, Ag(k —1) in the following equation, can additionally be provided

forall & :
eky=¢elk-1)+Aeg(k-1). (8)

If the model is viscoplastic, a time increment A¢ and strain rate £(k —1), are provided for all £
to calculate the strain increment Ag(k —1) via the relationship:
Ae(k—1)=At-e(k-1). 9)

A2 Classification of models

Material models can be typically classified into two types; those expressed by only stress
and strain and those also having variables describing internal material behaviours [Chaboche and
Rousselier, 1983]. One simple model of the former type is the Ramberg-Osgood model
[Ramberg and Osgood, 1943], which is given by

e=Z+a2), (10)
E b
where a, b and n are parameters to be identified, although this is a stress-controlled model at a
glance. Such a model can describe the stress-strain relationship only from the current
information, and the simulation is thus easily conducted. The fact that historical information is
not embedded in the model, however, limits its capability in describing material evolution.
In the latter, internal variables are introduced by separating the effect of elastic behaviour
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from the overall behaviour [Hart, 1976][Miller, 1976][Cernocky and Krempl, 1979][Walker,
1980][Schmit and Miller, 1987]. Due to the introduction of additional variables, this type of
model has a larger degree-of-freedom for description, thus being superior to the first type. As
most models developed of this type are strain-controlled, we shall only be concerned with strain-
controlled models in the subsequent part of the paper. In this case, the strain is divided into

e=¢&"+¢&". (11)

where £° and &" are the elastic and inelastic strains under uniaxial loading conditions,
respectively. The elastic behaviour is represented by the linear relationship between the strain
and stress:

oc=Es*=E(s—¢"), (12)

where E is Young’s modulus representing a linear coefficient. The inelastic strain is further
expressed by material internal variables. The following subsections will deal with the

formulation of &” in order to describe plasticity and viscoplasticity of materials.

A3 Plasticity

If only the plastic behaviour is considered for inelasticity in the latter model, the inelastic
strain is represented as

e"=g?, (13)

where ¢” is the plastic strain. It is assumed that work-hardening materials display plastic
deformation only upon increasing stress level and the yield condition for plastic deformation
changes during the loading process. The performance of such materials thus depends on the
previous states of stress and strain. In such path-dependent cases, the inelastic range of materials
is, in general, expressed by means of the thermodynamic forces associated with the two internal
variables; back stress representing kinematic hardening y and drag stress representing isotropic

hardening R and:
f=J(c—-—y)-R—-c<0, (14)

where ¢ is a material constant, and J represents a distance in the stress space. The plastic flow
follows the normality rule, which states

de™ = a’li.
Oo

(15a)

The plastic multiplier dA4 is derived from the hardening rule through the consistency
condition f =df =0. Materials then possess kinematic and isotropic rules, for example

. 15b
dy = C(%ada’" —;(dpj, (150)

dR =b(0 - R)dp, (15¢)

where dp is the accumulated plastic strain and C, a, b and Q are material constants
[Armstrong and Frederick, 1966][Mroz, et al., 1976]. Note here that we shall consider the
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details of plastic models to be outside the scope of this document and will not discuss them.
The dynamics of the equations can be uniquely specified by giving the initial conditions of
the internal variables:

e"(0)=g,, (16a)
20) = %4, (16b)
R(0)= R, . (16¢)

Firstly, the strain control for plastic models can be mathematically translated as
£(0)=¢,. (17)

The initial stress is thus derived from Eqgs. (12), (16a) and (17):
o(0)=E(g, —&l"). (18)

The next states of the plastic strain, back stress and drag stress can be then derived after their
incremental change has been calculated from Eq. (15):

e"(ky=" (k=) +As" (k-1), (19a)
x(k) = y(k=D+Ay(k-1), (19b)
R(k)=R(k-1)+AR(k-1). (19¢)

We can also derive the next state of stress o (k) through Egs. (8) and (19a):
o (k) = Els(k) - &" (k) (20)

and the repetition of Egs. (8), (15), (19) and (20) enables us to undertake the entire computer
simulation.

A4 Viscoplasticity

Materials often display viscous or time-dependent deformation, and the time-independent
plasticity is then considered as a particular limiting case of viscoplasticity. In the unified theory,
which is capable of describing cyclic loading and viscous behaviours [Miller, 1976][Robinson, et
al., 1976], the time-dependent effect is unified with the plastic deformation into a viscoplastic
term, i.e.,

" =gl +&" =¢g", (21)

where ¢ and &” represent the viscous and viscoplastic strains, respectively.

The viscoplastic potential is generally expressed as a power function of f in Eq. (14). The
Chaboche model [Chaboche, 1989], a popular viscoplastic model, uses this flow rule and, under
stationary temperature condition, has the a form combined with the kinematic and isotropic
hardening rules:
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B |o' — Z| —_RrR\" (22a)
" =(——) sgn(o —y),
a gn(o — %)

y=He" —Dy|é"|, (22b)

R =h|,,é"" —dR|é™|, (22¢c)

where x=[K,n,H, D,h,d, E ] are material parameters, and <> is the Macauley bracket.

Similar to the plastic case, the dynamics of the equations can be uniquely specified by
giving the initial conditions (11). The initial stress is thus calculated again by Eq. (18), and the
subsequent states of the viscoplastic strain, back stress and drag stress can be then derived by Eq.
(19) giving the following, after their rate of change has been computed by Eqgs. (22):

Ae™ (k-1 =At-é"(k-1), (23a)
Ay(k=1)=At- y(k-1), (23b)
AR(k)=At-R(k —1). (23¢)

Again, we can also derive the next state of stress o(k) in terms of Eq. (20), and the repetition of

these processes enables us to carry out the entire computer simulation. As they cover plasticity,
the ADVENTURE MATERIAL system is developed to deal with viscoplastic material models.

APPENDIX B: PARAMETER IDENTIFICATION

B.1 Formulation

As the measured data are stress-strain data [&,*,0,*], Vi e {l,...,m}, we first assume that any

model can be rewritten in the form
o=0(&;a), (24)

where o, ¢ and a represent the stress, strain and material parameters to be identified,
respectively. Parameters to be identified may not coincide with a, so let the parameters be x.
Then, the parameter identification problem can be formulated to find the parameters by adjusting
x until the measured data match the corresponding data computed from the parameter set in a
least-squares fashion. The identification problem is thus formulated as:

m
min Z wlo, *=6(¢*;a)]
R

subject to the parameter space constraints:

(25)
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Xpin SXSX (26)

mi

where w; is a scaling factor.

This objective function clearly depends on the measured data and the model in use. The
objective function can become complex, such as non-convex, or even multimodal if errors
contained in the model equations or/and errors in the measurement data are large. In such a case,
the solution may vibrate or diverge when conventional gradient-based optimisation methods are
used, which gives rise to the necessity for a robust optimisation method such that a stable
convergence is always achieved. The robust optimisation method, meanwhile, is not efficient in
searching due to the trade-off between the robustness and the efficiency.

The next subsection presents Gradient-Incorporated Continuous Evolutionary Algorithms
(GICEAs), which is implemented into the system as an optimisation method. The GICEA is a
mixture of gradient-based optimisation methods and evolutionary algorithms, so that it takes
advantage of both the methods, i.e., it is efficient by means of gradient-based search and it is
robust by means of evolutionary search.

B.2 Gradient-incorporated continuous evolutionary algorithms

Figure 12 shows the fundamental structure of the evolutionary algorithms. Firstly, a
population of individuals, each having some vector representation of a search point, is initially
(generation ¢ =0) generated at random, i.e.,

P'={ul,.,u}el", (27)

where A and [/ represent the population size of parental individuals and the space of an
individual, respectively. The population then evolves towards better regions of the search space
by means of the processes of recombination, mutation, selection and the elitist strategy, though
either the recombination or mutation is not implemented in some algorithms. In the
recombination, parental individuals breed offspring individuals by combining part of the
information from the parental individuals. This means that new search points are most possibly
created adjacent to the present search points. The mutation then forms new individuals by
making large alterations with small probability to the offspring individuals regardless of their
inherent information. As the recombination results in creation of new points similar to the
present points, the mutation contributes to the introduction of completely new points so that the
robust search can continue. With the evaluation of fitness for all the individuals, which
corresponds to the objective function value, the selection operator favourably selects individuals
of higher fitness for use more often than those of lower fitness. The search points therefore
move, on average, towards solution of the optimisation problem. The individual having the
highest fitness in the population is the solution at this generation. This individual is survived by
the elitist strategy to the next generation, thereby stable convergence is always guaranteed.
These reproductive operations form one generation of the evolutionary process, which
corresponds to one iteration in the algorithm, and the iteration is repeated until a given terminal
criterion is satisfied.
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t=0;
Initialise P(t);
do{
Recombinate P(t);
Mutate P(t);
Evaluate P(t);
Select P(t);
Elitist P(t);
t=t+1;
} while a terminal condition is satisfied

Figure 12 Fundamental structure of the evolutionary algorithms

In Continuous Evolutionary Algorithms (CEAs) [Furukawa and Dissnayake, 1993], the
representation of the individual is given by a search point itself, i.e., a continuous vector

x; € I =R". This formulation was made with an assumption that the direct use of the search

point may search more efficiently than the representation decoded into a binary string as used in
Genetic Algorithms (GAs) [Holland, 1975]. This representation makes us interpret the
individual not as genetic information but as phenomenological information.

The recombination and mutation are defined to deal with phenomenological properties,
accordingly. In the recombination, each individual is first paired with an individual at random.
Let a pair of present individuals be given by [x,,x,]. A new pair [X',, X';] is then created in

terms of a phenomenological recombination formula:
X', ==X, +pux, (28)
{x'ﬁ =, + (- px,
where y is defined by a normal distribution with mean 0 and standard deviation o :

,u=N(O,0'2), (29)
or simply given by a random value between specified limits g . and p, _, :
H= I.and(lumin ’ ﬂmax) . (30)

A new pair similar to the present pair can be created, provided that x is closed to zero, and they
are different as far as g is not equal to zero.

The mutation is conducted with only a small probability by definition. An individual, after
this mutation, x'", is described as

x"=rand(X,; , X, .. )- (3D

Note that the mutation is not necessary if parameter x is the normal distribution since it can

allow individuals to alter largely with a small probability, when the coefficient u is large.

The evaluation of the fitness can be conducted with a linear scaling, where the fitness of
each individual is calculated as the worst individual of the population subtracted from its
objective function value:
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O(x;) =max{f(x")|x" e P} - f(x}). (32)
®(x}) >0 is thus satisfied by this equation. As the fitness function value is guaranteed to be

positive, the proportional selection, which is the most popular selection operation, can also be
directly used in the CEAs [Goldberg, 1989]. In this selection, the reproduction probabilities of
individuals are given by their relative fitness:

D(x!) (33)
PIRCIESD

This selection clearly makes individuals, having high fitness values, more likely to be copied
into the next generation than individuals having low fitness values. As a result, the population of
individuals, on the whole, can move towards the solution of the optimisation problem.

One feature that is currently missing in this selection procedure is that it does not guarantee
the best individual always survives into the next generation, particularly when many individuals
have fitness close to that of the best individual. The elitist strategy, where the best individual is
always survived into the next generation on behalf of the worst individual, can thus compensate
for this disadvantage. With the elitist strategy, the best individual always moves in a descent
direction, thereby a stable convergence is obtained. In the GICEAs, the role of the best
individual is further extended, in conjunction with the subsequent recombination, into the next
generation for faster convergence. Let the individual having the best objective function value
Jrew =min{f(x)|x e P} be x,,,. The best individual does not take the recombination rule (23)
and, instead, is determined using its gradient information. The gradient search algorithm
adopted in GICEAs is the most popular quasi-Newton method with the BFGS algorithm
[Nemhauser, et al., 1989] as found in Sequential Quadratic Programming (SQP), and the
individual after the recombination, x, ', is formulated as

Xpess = {_ AilVf(Xbmt) if f(xbi’Sf') < f(Xbest) (34)

P(x})=

X,,, Otherwise

where A is a well-known positive-definite matrix used on behalf of Hessian matrix. This

formulation can be characterised by three features:

1. The acceptance of the creation of the new search point only if the objective function moves
in a descent direction. This formulation guarantees that the solution does not diverge even if
the objective function is multimodal. A stable solution can hence be obtained.

2. The fact that the best individual, who becomes the resultant solution, is created with the
gradient search means that the convergence is fast due to the gradient search.

3. The multiple-point search, with all the other individuals created with the probabilistic
recombination, does not diminish the robustness of search.

The effectiveness of CEAs has been investigated and they have been found to be one order
of magnitude more efficient than GAs in the optimisation of various objective functions having
continuous search space, which are complex but expressed explicitly, in past reports [Furukawa
and Yagawa, 1995][Furukawa, 1996][Furukawa and Yagawa, 1997]. The GICEAs take over
this effectiveness.

APPENDIX C: GENERALISATION
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C.1 Modelling

The parameter identification problem was formulated as Eq. (25) in the last section with the
assumption that any model can be given by Eq. (24). In order for automatic parameter
identification, the first important issue is how to computationally derive stress from a given
strain in a variety of models. Hence, a generalised model description becomes necessary.

It is obvious that existing material models are various due to the complexity of material
mechanics. As the issue is a computational matter, the models however can be easily generalised
by considering them mathematically [Furukawa, 1997]. In the generalised model, the first
equation to be constructed deals with the static stress-strain relationship and is given by

o =6(2,8 ) (35)
where & is the set of internal variables including the viscoplastic strain, back stress and drag

stress, and a is the set of material parameters. The internal evolution is then given by the state

space equations:

E=E(0.ta) (36)

to describe viscoplastic constitutive models. The generalised model thus consists of Eq. (35). If
internal variables are additionally considered, (36) are also included, enabling the majority of the
popular models can be represented by this model. The Ramberg-Osgood model, for example,
consists of Eq. (35), whilst the Chaboche model is defined by Egs. (35) and (36) with internal
variables €7, y and R. The system implement Eq. (12) for Eq. (35), so only required is to

specify Eq. (36) as explained in Section 4.

C.2 Simulation

The generalised model equation (35) clearly shows that internal variables must be inputted
to compute stress from a given strain if the model concerns internal evolution of material.
Formulation of the simulation for the proposed generalised model hence becomes necessary.
Since the state variables are the internal variables, the simulation of the generalised model
equations can be conducted by giving the initial conditions of the internal variables:

&0)=¢, (37)
As the initial condition of the strain is known beforehand by Eq. (17), the initial condition of the
stress can be calculated by substituting Egs. (17) and (37) into Eq. (35):
c(0)=05(¢g,,&,;a) (38)
This provides the rate of change of the internal variables for viscoplastic models at time

k=1_2,... by Eq. T5—! 8BITRROMEEA, ):

E(k—1) = &(c(k ~1),E(k~1);2) (39)
and the increment accordingly:
AE(k—=1) = At-E(k-1). (40)
The integration derives the next state of the internal variables of the viscoplastic model as
E(k)=&(k —1)+ Ag(k —1). (41)

As the strain g(k) is computed by Eq. (8), the next state of the observable variable can also be
derived by

o(k)=6(e(k),&(k);a) (42)
The model can be simulated by repeating these processes. Consequently, parameters necessary
for simulation are the strain rate £(k—1) and time increment Az for viscoplastic models.



21

Additionally, to automatically conduct the parameter identification formulated in (25), it is
important that these parameters be provided automatically once the type of experiment used to
create the experimental data is known. Typical material tests with strain control include the
monotonic (tensile/compression) test and the cyclic load test each with £(0)=0 and the stress

relaxation test. A general description of the variables pertaining to these tests is also, as a
minimum piece of information, necessary.

Figures 13 and 14 show monotonic and cyclic tests, respectively. One parameter common
in both the tests is the maximum absolute value of strain ¢,_, . Let the number of iterations until
the strain reaches ¢_, from zero be p, . If g cycles are simulated in the cyclic test, the strain
rate is given by:

, dnp,,, <k<@n+1)p,, (43)
: g, for
(k)= ‘ (4n+3)p,, <k<4np, >
-¢, for (4n+)p,, <k<(@n+3)p,,

where n =1,2,...,q. Note that the monotonic test is treated as the first quarter of the cyclic test,
and it 1s, thus, also given by Eq. (43) in the case of n =0, 1.e., 0<k < p_ . The strain interval
for one iteration is given by

44
Ag, = Emax. 44)
p sim
and the time increment A¢ is derived as:
45
At = B¢ )
&

The stress relaxation is the time-dependent behaviour where the stress is decreased while the
strain is kept constant (&(k) =¢,, k=1,2,...) and, hence, viscoplastic models are often formulated

to express this behaviour. The strain rate is therefore £(k)=0, k=1,2,.... If the stress relaxation

behaviour is observed up to terminal time ¢,_, , the time increment Atz is given by

46
At — tlTl’dX ( )

p sim
The monotonic and cyclic tests can be conclusively governed by only four parameters, i.e., strain
rate £, the maximum absolute value of strain ¢, the number of cycles ¢ and the number of

iterations p_, , and the stress relaxation test by constant strain &,(=¢,,,, ), terminal time ¢_,  and
the number of iterations p_,, .

A

<

S A
X ©» ‘AU
g 4 At § > p

okt ¢ k+l
- >
O 0 gmax
Time s Strain %

Figure 13 Monotonic tests
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Figure 14 Cyclic tests

In summary, the parameters necessary for the simulation consist of the model, initial
conditions and material parameters of the model, experimental conditions and the number of
iterations. The parameters are summarised in Table 1 where model parameters and experimental
conditions are detailed in Tables 2 and 3.

C.3 Identification

Now that the simulation has been generalised, the final generalisation required is to relate
the experimental data to the simulation data such that an objective function in (25) can be
automatically calculated. Suppose that there are m experiments, each having m; stress-strain

data, [o/*,&/*], Vie {1,2..,m’}, Vje{l,2..,m}. The first characteristic parameter we can
extract from the data is the constant increment:
Ael =gl *—gl * . (47)

exp

Strain increment Ag/  takes some non-zero value in the cyclic and monotonic tests, but is zero

exp

in the stress relaxation test. We can also find initial strain &/ and maximum strain ¢/, which

max

can be related as follows:
el =rl-Ael +e&l. (48)

max exp

where 7/ is the number of experimental data between the strains ¢/ and &/, excluding the

max ?

initial condition. Clearly, &/ =0 in both the cyclic and monotonic tests, and &/ =¢/  in the

stress relaxation test.

Let us redefine the identification problem more precisely using these new notations.
Parameters that are to be identified may include material parameters a and initial conditions &,.
By expressing the unknown and known parameters separately in vector form as a =[a',a*] and
€,=1&',,&*,], we first define parameters to be identified as x=[a',&',]. In accordance with
the model description (35) in the last subsection, the identification problem is formulated as:

Cam o ) (49)
min"> w0/ *~6(e/* E(k);a)]

j=1 i=0
subject to the parameter space constraints:
X, <SX<X (50)

where w; is the weighting factor. As seen in the formulation, it is required that strain &(k)

max ?
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coincide with each experimental data &/ *:

e(k)=¢l *, (51)
As the simulation increment Ag/ (k) is very small compared to the experimental step Agé(p, k
at which the experimental data are compared has to be a multiple of 7.

If p/ iterations take place until the simulation reaches ¢, * from &/, *, the k th iteration of
the simulation can be hence related to i th stress-strain data by

Using p/,, the strain increment for simulation can be derived as
- A&l (53)
Ag! =—2
P
and the number of simulations can be related as
Pl =Pl 1’ (54)

The parameters defined in Egs. (53) and (54) allow the simulation of plastic models compatible
with experimental data, and the simulation of viscoplastic models can be also achieved by

calculating the time increment Af in terms of Eq. (45). All the parameters for simulation and
identification are thus related.

Parameters necessary for automatic identification include the model, known initial conditions
and material parameters, the search space for unknown initial conditions and material parameters,
the number of experiments, experimental conditions, stress-strain data and the number of
iterations of each experiment, weights for optimisation criteria and parameters for GICEA.
These parameters are summarised in Table 1 Parameters for simulation

Parameter type Mathematical
representation
Model | Model parameters See Table 2
Initial conditions &,
Parameters a
Experimental conditions See Table 3
No. of iterations Deim

Table 2 Model parameters

Parameters Mathematical
representation

No. of state variables n,

No. of material parameters n,

Stress equation ol

Internal variable | Plastic model f;

equations Viscoplastic model é

Table 3 Experimental conditions
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Experiment type Parameters Mathematical
representation
Cyclic Strain rate (increment) £.(Ag,)
Maximum strain E o
Number of cycles q
Monotonic Strain rate (increment) £.(Ag,)
(Tensile / compression) [Torminal strain .
Stress relaxation Terminal time foo
Constant strain &

max

Table 4. It is seen that the parameters common in both the simulation and identification
include the model and part of the experimental condition.
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