
ADVENTURE_IO

Input/Output format and libraries for ADVENTURE modules

List of Input/Output Functions

February 17, 2006

ADVENTURE Project

ADVENTURE SYSTEM

2

Contents

1. Open/Close of Adv file .. 3
2. Open/Close of AdvDocument.. 4
3. Status of AdvDocument... 6
4. Reading and Writing of Properties .. 8
5. Reading of Raw Data .. 11
6. Writing of Raw Data... 16
7. Functions Related to AdvDatabox ... 20
8. Other Functions .. 23
Index .. 25

ADVENTURE SYSTEM

3

1. Open/Close of Adv file

u AdvDocFile* adv_dio_file_open(const char* filename, const
char* mode)
Opens the Adv file.

returned value The pointer of AdvDocFile
Argument filename: The name of the file stored in AdvDocFile

mode: The mode showing the purpose to open the file:
r for read (default);
c for create;
a for append.

u void adv_dio_file_close(AdvDocFile* dfile)
Closes the Adv file dfile.

returned value None
argument dfile: The pointer of AdvDocFile for closing

u const char* adv_dio_file_get_locator(AdvDocFile* dfile)
Returns the absolute path to the Adv file pointed out by dfile.

returned value An absolute path
argument dfile: The pointer of AdvDocFile

ADVENTURE SYSTEM

4

2. Open/Close of AdvDocument

u AdvDocument* adv_dio_create(AdvDocFile* dfile, const char*
did)
Opens a new Document in dfile. Document ID did is created using
adv_dio_get_documentid (see page 6).

returned value The pointer of AdvDocument for opening
argument dfile: The pointer of AdvDocFile

did: Document ID attached to AdvDocument

u AdvDocument* adv_dio_open_by_documentid(AdvDocFile* dfile,
const char* did)
Opens Document with specified Document ID contained in dfile.

returned value The pointer of corresponding AdvDocument
argument dfile: The pointer of AdvDocFile (search basis)

did: Document ID

u AdvDocument* adv_dio_open_nth(AdvDocFile* dfile, int n)
Opens the nth Document contained in dfile.

returned value The pointer of corresponding AdvDocument
argument dfile: The pointer of AdvDocFile (search basis)

n: An integer

u AdvDocument* adv_dio_open_by_property(AdvDocFile* dfile,
void* prev, ..., NULL)
Opens Document with specified Property contained in dfile. The keys and
values of Property should be put in “...” one-by-one for search operations. If
prev is NULL, the first matched Document will be returned. If the previously
matched Document is set as a pointer prev, the next Document, which matches
with search conditions can be found. NULL should be added to the end of the
search specification.

returned value The pointer of corresponded AdvDocument
argument dfile: AdvDocFile for search

prev: Document matched with conditions in “...”

ADVENTURE SYSTEM

5

... : Search conditions

Example:

doc = adv_dio_open_by_property
(dfile, NULL, "content_type", "FEGenericAttribute",

"label", "Load", NULL);

Document from dfile which has Property "content_type=FEGenericAddribute",
"label=Load" will be opened.

u AdvDocument* adv_dio_open_by_locator(const char* locator)
Opens Document with locator (a combination of Document ID and the path to
the file containing Document (See page 6)).

returned value The pointer of corresponding Document
argument locator: A sting of characters containing the path to the file

and the Document ID connected by “?”

u void adv_dio_close(AdvDocument* doc)
Closes Document.

returned value None
argument doc: The pointer of closing Document

ADVENTURE SYSTEM

6

3. Status of AdvDocument

u const char* adv_dio_make_documentid(const char* str)
Creates Document ID on the str basis.

returned value Created Document ID
argument str: The character string for the basis of Document ID

(For example: label@content_type)

u const char* adv_dio_get_documentid(AdvDocument* doc)
Returns Document ID of Document indicated by doc.

returned value Document ID (a string of characters)
argument doc: The pointer of Document

u adv_off_t adv_dio_get_size(AdvDocument* doc)
Returns the size of the Raw Data of Document indicated by doc.

returned value The size of Document (an integer)
argument doc: The pointer of Document

u const char* adv_dio_get_locator(AdvDocument* doc)
Acquires locator of Document doc. locator is a unique string of characters
assigned to indicate Document by an absolute path to the file and Document ID
doc in the form of Path?Document ID.

returned value locator (a string of characters)
argument doc: AdvDocument

Example:

/*********************************
example.c
********************************/
AdvDatabox *dbox;
AdvDocument *docin;
dbox = adv_dbox_new();
adv_dbox_add(dbox, argv[1]);

docin = adv_dbox_find_by_property(
dbox,NULL, "label","Displacement",NULL);

/* Document with Property "label=Displacement" is put into docin */
fprintf(stdout,"%s¥n",adv_dio_get_locator(docin));

Output Data:

The path to Disp.adv and Document ID docin are shown.

% example Disp.adv
/home/Disp.adv?6B8B4567:Displacement@HDDM_
FEGA:1988:39E5AB59

ADVENTURE SYSTEM

8

4. Reading and Writing of Properties

u void adv_dio_set_property(AdvDocument* doc, const char* key,
const char* val)
Sets the character-type values of Property to Document doc.

returned value None
argument doc: AdvDocument for set

key: The item of Property
val: Character-type data which will be set as values

u void adv_dio_set_property_int32(AdvDocument* doc, const
char* key, int32 val)
Sets the int32-type values of Property to Document doc.

returned value None
argument doc: AdvDocument for set

key: The item of Property
val: int32-type data which will be set as values

u void adv_dio_set_property_float64(AdvDocument* doc, const
char* key, float64 val)
Sets the float64-type values of Property to Document doc.

returned value None
argument doc: AdvDocument for set

key: The item of Property
val: float64-type data which will be set as values

u const char* adv_dio_get_property(AdvDocument* doc, const
char* key)
Reads the character-type value of Property from Document doc.

returned value Value of Property corresponding to key
argument doc: AdvDocument for read

key: The item of Property

ADVENTURE SYSTEM

9

u bool adv_dio_get_property_int32(AdvDocument* doc, const
char* key, int32* val)
Reads the int32-type value of Property from Document doc.

returned value
Normal operation: a value other than 0
Error: 0 value

argument doc: AdvDocument for read
key: The item of Property
val: Pointer of data substitution location (int32-type)

_

u bool adv_dio_get_property_float64(AdvDocument* doc, const
char* key, float64* val)
Reads the float64-type value of Property from Document doc.

returned value
Normal operation: a value other than 0
Error: 0 value

argument doc: AdvDocument for read
key: The item of Property
val: Pointer of data substitution location (float64-type)

u bool adv_dio_get_nth_property(AdvDocument* doc, int n, char* key, int
keysize, char* val, int valsize)
Inputs the value of nth Document’s Property to key and val respectively.
keysize and valsize are the maximum number of characters that can be
assigned for key and val (the reserved size of memory array must be large
enough to store the data).

returned value
Normal operation: a value other than 0
Error: 0 value

argument doc: AdvDocument for read
key: The pointer indicating the item’s name of Property

keysize: Maximum number of characters, which can be
assigned for key

val: The pointer of variables
valsize: Maximum number of characters, which can be

assigned for val

Example:

AdvDocument *doc
int n = 0;
char key[1024];
char val[1024];
while (adv_dio_get_nth_property

(doc, n, key, sizeof(key), val, sizeof(val))) n++;
/*Reads all Property */

ADVENTURE SYSTEM

10

u void adv_dio_unset_nth_property(AdvDocument* doc, int n)
Deletes nth Property of Document contained in doc from memory.

returned value None
argument doc: The pointer of AdvDocument for Property deletion

n: An integer

ADVENTURE SYSTEM

11

5. Reading of Raw Data

u int32 adv_dio_read_octet(AdvDocument* doc, adv_off_t
offset, int32 len, octet* buf)
Reads the len number of the octet-type (8-bits) data parts from the position
specified by offset in Raw Data of Document doc.

returned value Size of read data
argument doc: Document for reading

offset: The reading position in Raw Data
len: The number of parts of octet–type data for

reading
buf: The address of stored read octet-type data

u int32 adv_dio_read_string_length(AdvDocument* doc,
adv_off_t offset)
Counts the number of characters in the string at the offset reading position in
Raw Data of Document doc.

returned value Size of read data
argument doc: Document for reading

offset: The reading position in Raw Data

u int32 adv_dio_read_string(AdvDocument* doc, adv_off_t
offset, char* buf)
Reads the character string data from the position specified by offset in Raw
Data of Document doc and stores it in buf. The size of buf must be larger than
the size of the character string of the data read.

returned value Size of read data
argument doc: Document for reading

offset: The reading position in Raw Data
buf: The address of stored read data

ADVENTURE SYSTEM

12

u int32 adv_dio_read_int8(AdvDocument* doc, adv_off_t offset,
int8* val)
Reads the data as 8-bits int-type from the position specified by offset in Raw
Data of Document doc.

returned value Size of read data
argument doc: Document for reading

offset: The reading position in Raw Data
val: The address of stored read data

u int32 adv_dio_read_int8v(AdvDocument* doc, adv_off_t
offset, int num, int8* val)
Reads the num parts of data as 8-bits int-type from the position specified by
offset in Raw Data of Document doc.

returned value Size of read data
argument doc: Document for reading

offset: The reading position in Raw Data
num: The number of data parts to be read
val: The address of stored read data

u int32 adv_dio_read_int16(AdvDocument* doc, adv_off_t
offset, int16* val)
Reads the data as 16-bits int-type from the position specified by offset in Raw
Data of Document doc.

returned value Size of read data
argument doc: Document for reading

offset: The reading position in Raw Data
val: The address of stored read data

u int32 adv_dio_read_int16v(AdvDocument* doc, adv_off_t
offset, int num, int16* val)
Reads the num parts of data as 16-bits int-type from the position specified by
offset in Raw Data of Document doc.

returned value Size of read data
argument doc: Document for reading

offset: The reading position in Raw Data
num: The number of data parts to be read
val: The address of stored read data

ADVENTURE SYSTEM

13

u int32 adv_dio_read_int32(AdvDocument* doc, adv_off_t
offset, int32* val)
Reads the data as 32-bits int-type from the position specified by offset in Raw
Data of Document doc.

returned value Size of read data
argument doc: Document for reading

offset: The reading position in Raw Data
val: The address of stored read data

u int32 adv_dio_read_int32v(AdvDocument* doc, adv_off_t
offset, int num, int32* val)
Reads the num parts of data as 32-bits int-type from the position specified by
offset in Raw Data of Document doc.

returned value Size of read data
argument doc: Document for reading

offset: The reading position in Raw Data
num: The number of data parts to be read
val: The address of stored read data

u int32 adv_dio_read_int64(AdvDocument* doc, adv_off_t
offset, int64* val)

Reads the data as 64-bits int-type from the position specified by offset in
Raw Data of Document doc. In the computer environments where 64-bits int-
type is not supported, int32* will be used for the data type of val. In this case,
only the 32-bits part will be returned.

returned value Size of read data
argument doc: Document for reading

offset: The reading position in Raw Data
val: The address of stored read data

ADVENTURE SYSTEM

14

u int32 adv_dio_read_int64v(AdvDocument* doc, adv_off_t
offset, int num, int64* val)
Reads the num parts of data as 32-bits int-type from the position specified by
offset in Raw Data of Document doc. In the computer environments where 64-
bits int-type is not supported, int32* will be used for the data type of val. In
this case, only the 32-bits part will be returned.

returned value Size of read data
argument doc: Document for reading

offset: The reading position in Raw Data
num: The number of data parts to be read
val: The address of stored read data

u int32 adv_dio_read_float32(AdvDocument* doc, adv_off_t
offset, float32* val)
Reads the data as 32-bits float-type from the position specified by offset in
Raw Data of Document doc.

returned value Size of read data
argument doc: Document for reading

offset: The reading position in Raw Data
val: The address of stored read data

u int32 adv_dio_read_float32v(AdvDocument* doc, adv_off_t
offset, int num, float32* val)
Reads the num parts of data as 32-bits float-type from the position specified by
offset in Raw Data of Document doc.

returned value Size of read data
argument doc: Document for reading

offset: The reading position in Raw Data
num: The number of data parts to be read
val: The address of stored read data

u int32 adv_dio_read_float64(AdvDocument* doc, adv_off_t
offset, float64* val)
Reads the data as 64-bits float-type from the position specified by offset in
Raw Data of Document doc.

returned value Size of read data
argument doc: Document for reading

offset: The reading position in Raw Data
val: The address of stored read data

ADVENTURE SYSTEM

15

u int32 adv_dio_read_float64v(AdvDocument* doc, adv_off_t
offset, int num, float64* val)
Reads the num parts of data as 64-bits float-type from the position specified by
offset in Raw Data of Document doc.

returned value Size of read data
argument doc: Document for reading

offset: The reading position in Raw Data
num: The number of data parts to be read
val: The address of stored read data

ADVENTURE SYSTEM

16

6. Writing of Raw Data

u int32 adv_dio_write_octet(AdvDocument* doc, adv_off_t
offset, int32 length, const octet* buf)
Writes the octet-type data from buf into the position specified by offset in
Document doc.

returned value Size of written data
argument doc: Document for writing in

offset: The writing position in Raw Data
len: The length of octet-type data to be written
buf: The octet-type data

u int32 adv_dio_write_string(AdvDocument* doc, adv_off_t
offset, const char* buf)
Writes the string type data from buf into the position specified by offset in
Document doc.

returned value Size of written data
argument doc: Document for writing

offset: The writing position in Raw Data
buf: The string data

u int32 adv_dio_write_int8(AdvDocument* doc, adv_off_t
offset, int8 val)
Writes the int-type 8-bits data into the position specified by offset in
Document doc.

returned value Size of written data
argument doc: Document for writing

offset: The writing position in Raw Data
val: The written data

ADVENTURE SYSTEM

17

u int32 adv_dio_write_int8v(AdvDocument* doc, adv_off_t
offset, int num, const int8* val)
Writes the num parts of 8-bits int-type data into the position specified by
offset in Document doc.

returned value Size of written data
argument doc: Document for writing

offset: The writing position in Raw Data
num: The number of data parts
val: The written data

u int32 adv_dio_write_int16(AdvDocument* doc, adv_off_t
offset, int16 val)
Writes the 16-bits int-type data into the position specified by offset in
Document doc.

returned value Size of written data
argument doc: Document for writing

offset: The writing position in Raw Data
val: The written data

u int32 adv_dio_write_int16v(AdvDocument* doc, adv_off_t
offset, int num, const int16* val)
Writes the num parts of the 16-bits int-type data into the position specified by
offset in Document doc.

returned value Size of written data
argument doc: Document for writing

offset: The writing position in Raw Data
num: The number of data parts
val: The written data

u int32 adv_dio_write_int32(AdvDocument* doc, adv_off_t
offset, int32 val)
Writes the 32-bits int-type data into the position specified by offset in
Document doc.

returned value Size of written data
argument doc: Document for writing

offset: The writing position in Raw Data
val: The written data

ADVENTURE SYSTEM

18

u int32 adv_dio_write_int32v(AdvDocument* doc, adv_off_t
offset, int num, const int32* val)
Writes the num parts of the 32-bits int-type data into the position specified by
offset of Document doc.

returned value Size of written data
argument doc: Document for writing

offset: The writing position in Raw Data
num: The number of data parts
val: The written data

u int32 adv_dio_write_int64(AdvDocument* doc, adv_off_t
offset, int64 val)
Writes the 64-bits int-type data into the position specified by offset in
Document doc. In the computer environments where 64-bits int-type is not
supported, int32 will be used for the data type of val and the missing 32-bits
part will be filled by 0.

returned value Size of written data
argument doc: Document for writing

offset: The writing position in Raw Data
val: The written data

u int32 adv_dio_write_int64v(AdvDocument* doc, adv_off_t
offset, int num, const int64* val)
Writes the num parts of the 64-bits int-type data into the position specified by
offset in Document doc. In the computer environments where 64-bits int-type
is not supported, int32* will be used for the data type of val and the missing 32-
bits part will be filled by 0.

returned value Size of written data
argument doc: Document for writing

offset: The writing position in Raw Data
num: The number of data parts
val: The written data

ADVENTURE SYSTEM

19

u int32 adv_dio_write_float32(AdvDocument* doc, adv_off_t
offset, float32 val)
Writes the float-type 32-bits data into the position specified by offset in
Document doc.

returned value Size of written data
argument doc: Document for writing

offset: The writing position in Raw Data
val: The written data

u int32 adv_dio_write_float32v(AdvDocument* doc, adv_off_t
off-set, int num, const float32* val)
Writes the num parts of the 32-bits float-type data into the position specified by
offset in Document doc.

returned value Size of written data
argument doc: Document for writing

offset: The writing position in Raw Data
num: The number of data parts
val: The written data

u int32 adv_dio_write_float64(AdvDocument* doc, adv_off_t
offset, float64 val)
Writes the 64-bits float-type data into the position specified by offset in
Document doc.

returned value Size of written data
argument doc: Document for writing

offset: The writing position in Raw Data
val: The written data

u int32 adv_dio_write_float64v(AdvDocument* doc, adv_off_t
off-set, int num, const float64* val)
Writes the num parts of the 64-bits float-type data into the position specified by
offset in Document doc.

returned value Size of written data
argument doc: Document for writing

offset: The writing position in Raw Data
num: The number of data parts
val: The written data

ADVENTURE SYSTEM

20

7. Functions Related to AdvDatabox

u AdvDatabox* adv_dbox_new(void)
Opens AdvDatabox.

returned value Pointer of opened AdvDatabox
argument None

u bool adv_dbox_add(AdvDatabox* adb, const char* locator)
Stores the Document of the file specified by locator in the AdvDatabox.

returned value Normal operation: a value other than 0
Error: 0 value

argument adb: AdvDatabox which contains AdvDocument
locator: The name of the file containing AdvDocument

u void adv_dbox_close(AdvDatabox* adb)
Closes AdvDatabox.

returned value None
argument adb: Closed AdvDatabox

u AdvDocument* adv_dbox_find_by_documentid(AdvDatabox* adb,
const char* docid)
Opens Document with Document ID defined by docid from AdvDatabox.

returned value The pointer of corresponding AdvDocument
argument adb: AdvDatabox for search

locator: The string displaying Document ID

ADVENTURE SYSTEM

21

u AdvDocument* adv_dbox_find_by_property(AdvDatabox* adb,
AdvDocument* prev, ...)
Searches in AdvDatabox for Document with specified Property. prev and
“...” are the same as that of adv_dio_open_by_property (page 4).

returned value The pointer of corresponding AdvDocument
argument adb: AdvDatabox for search

prev: Document matched with search conditions “...”
... : Search conditions

u int adv_dbox_count_by_property(AdvDatabox* adb, ...)
Counts the number of Documents in AdvDatabox, which matched with specified
Property.

returned value The number of corresponding AdvDocument
argument adb: AdvDatabox for search

... : Search conditions (uses the same setting procedure
as adv_dio_open_by_property.

u AdvDocument* adv_dbox_open_nth(AdvDatabox* adb, int n)
Opens nth Document recorded in AdvDatabox.

returned value The pointer of corresponding AdvDocument
argument adb: AdvDatabox for search

n: An integer

Example:

A part of the program that displays all Document IDs of Document included into adb.

void main(int argc,char* argv[]){

int i=0;
AdvDatabox *adb;
AdvDocument *doc;

adb = adv_dbox_new();
adv_dbox_add(adb, "test.adv");
while((doc = adv_dbox_open_nth(adb, i++)) != NULL)

fprintf(stderr,"%s¥n",adv_dio_get_documentid(doc));
/* adv_dio_get_documentid(doc) : returns Document ID of doc */

Output results:

All Document IDs of Document included into adb are displayed.

6B8B4567:HDDM_FEGA@HDDM_Part[0]:190F:39B4FB9B
643C9869:HDDM_FEGA@HDDM_Part[0]:190F:39B4FB9B
74B0DC51:HDDM_FEGA@HDDM_Part[0]:190F:39B4FB9B
2AE8944A:HDDM_FEGA@HDDM_Part[0]:190F:39B4FB9B
238E1F29:HDDM_FEGA@HDDM_Part[0]:190F:39B4FB9B
3D1B58BA:HDDM_FEGA@HDDM_Part[0]:190F:39B4FB9B
2EB141F2:HDDM_FEGA@HDDM_Part[0]:190F:39B4FB9B
79E2A9E3:HDDM_FEGA@HDDM_Part[0]:190F:39B4FB9B
515F007C:HDDM_FEGA@HDDM_Part[0]:190F:39B4FB9B
12200854:HDDM_FEGA@HDDM_Part[0]:190F:39B4FB9B
216231B:HDDM_FEGA@HDDM_Part[0]:190F:39B4FB9B
1190CDE7:HDDM_FEGA@HDDM_Part[0]:190F:39B4FB9B
140E0F76:HDDM_FEGA@HDDM_Part[0]:190F:39B4FB9B
109CF92E:HDDM_FEGA@HDDM_Part[0]:190F:39B4FB9B
7FDCC233:HDDM_FEGA@HDDM_Part[0]:190F:39B4FB9B
41A7C4C9:HDDM_FEGA@HDDM_Part[0]:190F:39B4FB9B
4E6AFB66:DocumentList@HDDM_Part[0]:190F:39B4FB9B

ADVENTURE SYSTEM

23

8. Other Functions

u void adv_dio_copy_to_file(AdvDocFile* dfile, AdvDocument*
doc)
Copies Document doc to Adv file indicated by dfile.

returned value None
argument dfile: The target file Adv file for copy

doc: Document to be copied

u int adv_format_get_size(const char* format)
Returns the size of the data depending on the data format, which is indicated by the
character string format used in Property to show the format of Raw Data.
format is presented by combination of i1, i2, i4, i8, f4 and f8.

returned value The size of the data indicated by format
(If non-permissible characters are found in the
character string of format, -1 will be returned)

argument format: A string of characters showing the format of Raw
Data

Example:

int bytes1,bytes2;

bytes1 = adv_format_get_size("i4f8f8");
bytes2 = adv_format_get_size("int32");
printf("size of format = %d¥n",bytes1);
printf("size of int32 = %d¥n",bytes2);

Output results:

size of i4f8f8 = 20
size of int32 = -1
(-1 is returned due to non-permissible characters “int32” in displaying the format of
Raw Data)

ADVENTURE SYSTEM

24

u bool adv_format_pack(octet* buf, const char* format, ...)
Packs the data in octet-type buf according to format.

returned value Normal operation: a value other than 0
Error: 0 value

argument buf: The location of stored data array (octet-type)
format: The string of characters which displays the format of

Raw Data
... : The data sequence

u bool adv_format_pack_v(octet* buf, const char* format,
va_list va)
Rearranges the data from the list of variable arguments va to fit the format
format and packs it into octet-type buf.

returned value Normal operation: a value other than 0
Error: 0 value

argument buf: The location of stored data array (octet-type)
format: The string of characters which displays the format of

Raw Data
va: The list of variable arguments to present the data

u bool adv_format_unpack(octet* buf, const char* format, ...)
Unpacks the octet-type data from buf according to format format.

returned value Normal operation: a value other than 0
Error: 0 value

argument buf: The packed data array
format: The string of characters which displays the format
... : The row of addresses of the variables which store

the data

ADVENTURE SYSTEM

25

Index

adv_dbox_add 20 adv_dio_write_float32 19
adv_dbox_close 20 adv_dio_write_float32v 19
adv_dbox_count_by_property 21 adv_dio_write_float64 19
adv_dbox_find_by_documentid 20 adv_dio_write_float64v 19
adv_dbox_find_by_property 21 adv_dio_write_int16 17
adv_dbox_new 20 adv_dio_write_int16v 17
adv_dbox_open_nth 21 adv_dio_write_int32 17
adv_dio_close 5 adv_dio_write_int32v 18
adv_dio_copy_to_file 23 adv_dio_write_int64 18
adv_dio_create 4 adv_dio_write_int64v 18
adv_dio_file_close 3 adv_dio_write_int8 16
adv_dio_file_get_locator 3 adv_dio_write_int8v 17
adv_dio_file_open 3 adv_dio_write_octet 16
adv_dio_get_documentid 6 adv_dio_write_string 16
adv_dio_get_locator 6 adv_format_get_size 23
adv_dio_get_nth_property 9 adv_format_pack 24
adv_dio_get_property 8 adv_format_pack_v 24
adv_dio_get_property_float64 9 adv_format_unpack 24
adv_dio_get_property_int32 9
adv_dio_get_size 6
adv_dio_make_documentid 6
adv_dio_open_by_documentid 4
adv_dio_open_by_locator 5
adv_dio_open_by_property 4
adv_dio_open_nth 4
adv_dio_read_float32 14
adv_dio_read_float32v 14
adv_dio_read_float64 14
adv_dio_read_float64v 15
adv_dio_read_int16 12
adv_dio_read_int16v 12
adv_dio_read_int32 13
adv_dio_read_int32v 13
adv_dio_read_int64 13
adv_dio_read_int64v 14
adv_dio_read_int8 12
adv_dio_read_int8v 12
adv_dio_read_octet 11
adv_dio_read_string 11
adv_dio_read_string_length 11
adv_dio_set_property 8
adv_dio_set_property_float64 8
adv_dio_set_property_int32 8
adv_dio_unset_nth_property 10

